![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
Showing 1 - 3 of 3 matches in All Departments
Chapter 1 introduces elementary classical special functions. Gamma, beta, psi, zeta functions, hypergeometric functions and the associated special functions, generalizations to Meijer's G and Fox's H-functions are examined here. Discussion is confined to basic properties and selected applications. Introduction to statistical distribution theory is provided. Some recent extensions of Dirichlet integrals and Dirichlet densities are discussed. A glimpse into multivariable special functions such as Appell's functions and Lauricella functions is part of Chapter 1. Special functions as solutions of differential equations are examined. Chapter 2 is devoted to fractional calculus. Fractional integrals and fractional derivatives are discussed. Their applications to reaction-diffusion problems in physics, input-output analysis, and Mittag-Leffler stochastic processes are developed. Chapter 3 deals with q-hyper-geometric or basic hypergeometric functions. Chapter 4 covers basic hypergeometric functions and Ramanujan's work on elliptic and theta functions. Chapter 5 examines the topic of special functions and Lie groups. Chapters 6 to 9 are devoted to applications of special functions. Applications to stochastic processes, geometric infinite divisibility of random variables, Mittag-Leffler processes, alpha-Laplace processes, density estimation, order statistics and astrophysics problems, are dealt with in Chapters 6 to 9. Chapter 10 is devoted to wavelet analysis. An introduction to wavelet analysis is given. Chapter 11 deals with the Jacobians of matrix transformations. Various types of matrix transformations and the associated Jacobians are provided. Chapter 12 is devoted to the discussion offunctions of matrix argument in the real case. Functions of matrix argument and the pathway models along with their applications are discussed.
This book focuses on Erdelyi-Kober fractional calculus from a statistical perspective inspired by solar neutrino physics. Results of diffusion entropy analysis and standard deviation analysis of data from the Super-Kamiokande solar neutrino experiment lead to the development of anomalous diffusion and reaction in terms of fractional calculus. The new statistical perspective of Erdelyi-Kober fractional operators outlined in this book will have fundamental applications in the theory of anomalous reaction and diffusion processes dealt with in physics. A major mathematical objective of this book is specifically to examine a new definition for fractional integrals in terms of the distributions of products and ratios of statistically independently distributed positive scalar random variables or in terms of Mellin convolutions of products and ratios in the case of real scalar variables. The idea will be generalized to cover multivariable cases as well as matrix variable cases. In the matrix variable case, M-convolutions of products and ratios will be used to extend the ideas. We then give a definition for the case of real-valued scalar functions of several matrices.
Chapter 1 introduces elementary classical special functions. Gamma, beta, psi, zeta functions, hypergeometric functions and the associated special functions, generalizations to Meijer's G and Fox's H-functions are examined here. Discussion is confined to basic properties and selected applications. Introduction to statistical distribution theory is provided. Some recent extensions of Dirichlet integrals and Dirichlet densities are discussed. A glimpse into multivariable special functions such as Appell's functions and Lauricella functions is part of Chapter 1. Special functions as solutions of differential equations are examined. Chapter 2 is devoted to fractional calculus. Fractional integrals and fractional derivatives are discussed. Their applications to reaction-diffusion problems in physics, input-output analysis, and Mittag-Leffler stochastic processes are developed. Chapter 3 deals with q-hyper-geometric or basic hypergeometric functions. Chapter 4 covers basic hypergeometric functions and Ramanujan's work on elliptic and theta functions. Chapter 5 examines the topic of special functions and Lie groups. Chapters 6 to 9 are devoted to applications of special functions. Applications to stochastic processes, geometric infinite divisibility of random variables, Mittag-Leffler processes, alpha-Laplace processes, density estimation, order statistics and astrophysics problems, are dealt with in Chapters 6 to 9. Chapter 10 is devoted to wavelet analysis. An introduction to wavelet analysis is given. Chapter 11 deals with the Jacobians of matrix transformations. Various types of matrix transformations and the associated Jacobians are provided. Chapter 12 is devoted to the discussion of functions of matrix argument in the real case. Functions of matrix argument and the pathway models along with their applications are discussed.
|
You may like...
Discovering Daniel - Finding Our Hope In…
Amir Tsarfati, Rick Yohn
Paperback
Heat - 2-Disc Director's Definitive…
Al Pacino, Robert De Niro, …
Blu-ray disc
(2)R309 Discovery Miles 3 090
|