Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
Synergistic integration of smart materials, structures, sensors, actuators and control electronics has redefined the concept of"structures" from a conventional passive elastic system to an active controllable structronic (structure +electronic) system with inherent self-sensing, diagnosis, and control capabilities. Such structronic systems can be used as components of high performance systems or can be an integrated structure itself performing designated functions and tasks. Due to the multidisciplinary nature of structronic systems their development has attracted researchers and scientists from theoretical and applied mechanics and many other disciplines, such as structures, materials, control, electronics, computers, mathematics, manufacturing, electromechanics, etc., see Figure I. This field was first introduced about mid-80 and it is quickly becoming a new emerging field recognized as one ofthe key technologies of 51 the 21 century. This new field focuses on not only multi-field and multi-discipline integrations, but has also enormous practical applications impacting many industries and enriching human living qualities. Structures (Systemill, Monitoring. . . ) (Non-homogeneous & Incompatible Structures) Electromechanics I StrucTranics I (SmartStructures) ___. I Mechanics (Solid, (Intelligent Structural Systems) Fracture, Fatigue. . . ) DynamicslKinematics & Vibration Figure I Multi-disciplinary integration ofstructronic systems. To reflect the rapid development in smart structures and structronic systems, the objective of the IUTAM 2000 Symposium on Smart Structures and Structronic Systems, the first IUTAM symposium in this new emerging area, is to provide a forum to discuss recent research advances and future directions or trends in this field.
In recent years, "intelligent (sm. o. rt) structures antlllJ/stems" has become an emerging new research area that is multi-disciplinary in nature, requiring technical expertise from mechanical engineering, structural engineering, electrical engineering, applied mechanics, engineering mathematics, material science, computer science, biological science, etc. This technology is quite likely to contribute significant advancements in the design of high-performance structures, adaptive structures, high-precision systems, micro-systems, etc. Although this emerging area has been rapidly gathering momentum in the last few years, researchers are aware that to some extent only initial, but highly feasible studies of the concepts proposed have been conducted. It is obvious that many important, pertinent fundamental research subjects must yet be investigated and resolved in the near future. We have the privilege to invite a number of highly regarded research scientists and engineers to summarize and contribute the results of their years of research experience with the evolution of intelligent (smart) structures and systems to the collection of chapters contained in this book. Their research topics include current intelligent (smart) structures research activities, piezoelectric structures, shape memory alloy reinforced composites, applications of electrorheological fluids, intelligent sensor systems, adaptive precision trusses, damage detection, model refinement, control of axial moving continua, distributed transducers, etc. These subjects represent only a small portion of the complete picture; indeed, the fundamentally important development of smart or intelligent materials is not addressed in detail here.
Research into and development of high-precision systems, microelectromechanical systems, distributed sensors/actuators, smart structural systems, high-precision controls, etc. have drawn much attention in recent years. These new devices and systems will bring about a new technical revolution in modern industries and impact future human life. This book presents a unique overview of these technologies such as silicon based sensors/actuators and control piezoelectric micro sensors/actuators, micro actuation and control, micro sensor applications in robot control, optical fiber sensors/systems, etc. These are four essential subjects emphasized in the book: 1. Survey of the (current) research and development; 2. Fundamental theories and tools; 3. Practical applications. 4. Outlining future research and development.
Synergistic integration of smart materials, structures, sensors, actuators and control electronics has redefined the concept of"structures" from a conventional passive elastic system to an active controllable structronic (structure +electronic) system with inherent self-sensing, diagnosis, and control capabilities. Such structronic systems can be used as components of high performance systems or can be an integrated structure itself performing designated functions and tasks. Due to the multidisciplinary nature of structronic systems their development has attracted researchers and scientists from theoretical and applied mechanics and many other disciplines, such as structures, materials, control, electronics, computers, mathematics, manufacturing, electromechanics, etc. , see Figure I. This field was first introduced about mid-80 and it is quickly becoming a new emerging field recognized as one ofthe key technologies of 51 the 21 century. This new field focuses on not only multi-field and multi-discipline integrations, but has also enormous practical applications impacting many industries and enriching human living qualities. Structures (Systemill, Monitoring...) (Non-homogeneous & Incompatible Structures) Electromechanics I StrucTranics I (SmartStructures) ___. I Mechanics (Solid, (Intelligent Structural Systems) Fracture,Fatigue...) DynamicslKinematics & Vibration Figure I Multi-disciplinary integration ofstructronic systems. To reflect the rapid development in smart structures and structronic systems, the objective of the IUTAM 2000 Symposium on Smart Structures and Structronic Systems, the first IUTAM symposium in this new emerging area, is to provide a forum to discuss recent research advances and future directions or trends in this field.
Exploiting new advanced structures and electromechanical systems, e. g. , adaptive structures, high-precision systems, micro electromechanical systems, distributed sensors/actuators, precision manipulation and controls, etc. , has been becoming one of the mainstream research and development activities (structure & motion) in recent years. These new systems and devices could bring a new technological revolution in modern industries and further, directly or indirectly, impact human life. In the search for and research in innovative technologies, it is proved that piezoelectric materials are very versatile in both sensor and actuator applications. Consequently, piezoelectric technology has been widely applied to a large number of industrial applications and devices, varying from thin-film micro sensors/actuators to large space structures in addition to those relatively conventional applications, e. g. , sensors, actuators, hydrophones, precision manipulators, mobile robots, micro motors, etc. There have been a few books on piezoelectricity published in the past; however, a unified presentation of piezoelectric shells and distributed senSing/control applications is still lacking. This book is intended to fill the gap and to pro~de practising engineers and researchers with an introduction to advanced piezoelectric shell theories and distributed sensor/actuator technologies in structural identification and control. This book represents a collection of the author's recent research and development on piezoelectric shells and related applications to distributed measurement and control of continuaj it reflects six best-paper awards, including [ xviii] * Contents. two ASME Best-Paper Awards in recent years.
Research into and development of high-precision systems, microelectromechanical systems, distributed sensors/actuators, smart structural systems, high-precision controls, etc. have drawn much attention in recent years. These new devices and systems will bring about a new technical revolution in modern industries and impact future human life. This book presents a unique overview of these technologies such as silicon based sensors/actuators and control piezoelectric micro sensors/actuators, micro actuation and control, micro sensor applications in robot control, optical fiber sensors/systems, etc. These are four essential subjects emphasized in the book: 1. Survey of the (current) research and development; 2. Fundamental theories and tools; 3. Practical applications. 4. Outlining future research and development.
In recent years, "intelligent (sm. o. rt) structures antlllJ/stems" has become an emerging new research area that is multi-disciplinary in nature, requiring technical expertise from mechanical engineering, structural engineering, electrical engineering, applied mechanics, engineering mathematics, material science, computer science, biological science, etc. This technology is quite likely to contribute significant advancements in the design of high-performance structures, adaptive structures, high-precision systems, micro-systems, etc. Although this emerging area has been rapidly gathering momentum in the last few years, researchers are aware that to some extent only initial, but highly feasible studies of the concepts proposed have been conducted. It is obvious that many important, pertinent fundamental research subjects must yet be investigated and resolved in the near future. We have the privilege to invite a number of highly regarded research scientists and engineers to summarize and contribute the results of their years of research experience with the evolution of intelligent (smart) structures and systems to the collection of chapters contained in this book. Their research topics include current intelligent (smart) structures research activities, piezoelectric structures, shape memory alloy reinforced composites, applications of electrorheological fluids, intelligent sensor systems, adaptive precision trusses, damage detection, model refinement, control of axial moving continua, distributed transducers, etc. These subjects represent only a small portion of the complete picture; indeed, the fundamentally important development of smart or intelligent materials is not addressed in detail here.
Distributed parameter systems encompass a broad range of engineering applications from stereo speakers to space structures. The dynamic behavior of these systems is usually governed by one or more partial differential equations, which may accurately represent the physical system but are often difficult to solve exactly. Research in the dynamics and control of distributed parameter structural systems has grown dramatically in recent years, owing in part to the increasing complexity of these systems. Emerging technologies such as smart materials and mechatronics have contributed to growth in interest. The purpose of this book is to document recent progress in both theory and practical applications. Chapters discuss new simulation, modeling, and analysis techniques used to investigate a variety of elastic, electromechanical, and acoustic systems. With contributions by leading authorities, this book will serve as an up-to-date resource for researchers and graduate students and also as a useful reference for practicing engineers working in the area of dynamics and control of distributed systems.
|
You may like...
|