Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 11 of 11 matches in All Departments
This book examines the fundamental concepts of multimodality small-animal molecular imaging technologies and their numerous applications in biomedical research. Driven primarily by the widespread availability of various small-animal models of human diseases replicating accurately biological and biochemical processes in vivo, this is a relatively new yet rapidly expanding field that has excellent potential to become a powerful tool in biomedical research and drug development. In addition to being a powerful clinical tool, a number of imaging modalities including but not limited to CT, MRI, SPECT and PET are also used in small laboratory animal research to visualize and track certain molecular processes associated with diseases such as cancer, heart disease and neurological disorders in living small animal models of disease. In vivo small-animal imaging is playing a pivotal role in the scientific research paradigm enabling to understand human molecular biology and pathophysiology using, for instance, genetically engineered mice with spontaneous diseases that closely mimic human diseases.
This book provides a review of image analysis techniques as they are applied in the field of diagnostic and therapeutic nuclear medicine. Driven in part by the remarkable increase in computing power and its ready and inexpensive availability, this is a relatively new yet rapidly expanding field. Likewise, although the use of radionuclides for diagnosis and therapy has origins dating back almost to the discovery of natural radioactivity itself, radionuclide therapy and, in particular, targeted radionuclide therapy has only recently emerged as a promising approach for therapy of cancer and, to a lesser extent, other diseases. As effort has, therefore, been made to place the reviews provided in this book in a broader context. The effort to do this is reflected by the inclusion of introductory chapters that address basic principles of nuclear medicine imaging, followed by overview of issues that are closely related to quantitative nuclear imaging and its potential role in diagnostic and therapeutic applications. The different chapters discuss the basic principles and various steps required for obtaining quantitatively accurate data from nuclear medicine images including data collection methods and algorithms used to correct them for physical degrading factors (e.g. collimator response, attenuation, scatter, partial volume effect), and image reconstruction algorithms (analytic, iterative) as well as image processing and analysis techniques as their clinical and research applications in neurology, cardiology and oncology. Some algorithms are described and illustrated with some useful features and clinical applications. Other potential applications of quantitative image analysis such asimage-guided radiation therapy are also discussed.
This book provides a review of image analysis techniques as they are applied in the field of diagnostic and therapeutic nuclear medicine. Driven in part by the remarkable increase in computing power and its ready and inexpensive availability, this is a relatively new yet rapidly expanding field. Likewise, although the use of radionuclides for diagnosis and therapy has origins dating back almost to the discovery of natural radioactivity itself, radionuclide therapy and, in particular, targeted radionuclide therapy has only recently emerged as a promising approach for therapy of cancer and, to a lesser extent, other diseases. As effort has, therefore, been made to place the reviews provided in this book in a broader context. The effort to do this is reflected by the inclusion of introductory chapters that address basic principles of nuclear medicine imaging, followed by overview of issues that are closely related to quantitative nuclear imaging and its potential role in diagnostic and therapeutic applications. The different chapters discuss the basic principles and various steps required for obtaining quantitatively accurate data from nuclear medicine images including data collection methods and algorithms used to correct them for physical degrading factors (e.g. collimator response, attenuation, scatter, partial volume effect), and image reconstruction algorithms (analytic, iterative) as well as image processing and analysis techniques as their clinical and research applications in neurology, cardiology and oncology. Some algorithms are described and illustrated with some useful features and clinical applications. Other potential applications of quantitative image analysis such as image-guided radiation therapy are also discussed.
In this issue of PET Clinics, guest editors Drs. Abass Alavi, Habib Zaidi, and Suleman Surti bring their considerable expertise to the topic of Advances in Organ-specific PET Instrumentation and Their Clinical Applications. Top experts cover key topics such as the increasing use of silicon photomultiplier (SiPM) technology, advances in depth-of-interaction (DOI) and time-of-flight (TOF) PET detectors, the use of artificial intelligence technologies for detector development; and more. Contains 11 relevant, practice-oriented topics including advances in PET detectors and readout technologies; whole-gamma imaging; clinical applications of dedicated brain PET; clinical applications of dedicated breast PET; potential clinical applications of dedicated prostate PET; and more. Provides in-depth clinical reviews on advances in organ-specific PET instrumentation and their clinical applications, offering actionable insights for clinical practice. Presents the latest information on this timely, focused topic under the leadership of experienced editors in the field. Authors synthesize and distill the latest research and practice guidelines to create clinically significant, topic-based reviews.
This issue of PET Clinics focuses on Recent Advances in Imaging with PET, CT, and MR Techniques and is edited by Drs. Habib Zaidi, Abass Alavi and Drew A. Torigian. Articles will include: Total-body PET imaging: Developments in instrumentation; Prospects for total-body PET imaging using plastic scintillators; Total-body imaging: Potential clinical applications; New challenges for PET image reconstruction for total-body imaging; Advances in preclinical PET instrumentation; Applications of hybrid PET/MRI in CNS disorders; Applications of hybrid PET-MRI in MSK disorders; Assessment of total body atherosclerosis burden by PET-CT; Recent advances on CT and MR imaging in radiology; Potential impact of Total Body PET imaging in measuring global disease burden in systemic inflammatory disorders; Applications of PET-MRI in CV disorders; and more!
This issue examines PET-MRI with evolving but potentially competing technologies. The guest editors have put together an extremely timely issue as practicing radiologists are increasingly curious about the role of diffusion weighted imaging with MRI as a competing or a complementary technique to PET.
The complexity of issues associated with gating studies with PET imaging are mostly unknown among practitioners of the field, which is posing a significant danger to those who undergo such studies. This is particularly true for respiratory gating examination. Topics in this issue include both basic and clinical topics, including views from radiation oncology physicians.
This issue of PET Clinics focuses on PET/MRI: Clinical Applications, and is edited by Drs. Drew Torigian and Andreas Kjaer. Articles will include: PET/MRI in Prostate Cancer; PET/MRI in Vascular Disease; PET/MRI in Lymphoma; PET/MRI in Head and Neck Cancer; PET/MRI in Brain Disease; PET/MR in Cancers of GI Tract; PET/MRI in Gynecologic Cancer; Clinical PET/MRI Systems and Patient Workflow; PET/MRI in Heart Disease; PET/MR in Breast Cancer and Lung Cancer; PET/MRI in Musculoskeletal Disorders; PET/MRI in Pediatric Oncology; Clinical PET/MRI: Future Perspectives; and more!
This issue of PET Clinics focuses on PET/MRI: Advances in Instrumentation and Quantitative Procedures. Articles will include: Advances in clinical PET/MRI instrumentation; Magnetic resonance imaging-guided attenuation correction of positron emission tomography data in PET/MRI; Magnetic resonance imaging-guided partial volume correction of positron emission tomography data in PET/MRI; Magnetic resonance imaging-guided derivation of the input function for PET kinetic modeling; Innovations in small-animal PET/MRI instrumentation; Dual-modal PET/MRI molecular imaging probes; Magnetic resonance imaging-guided motion compensation of positron emission tomography data in PET/MRI; Attenuation correction for MR coils in combined PET/MR imaging; and more!
|
You may like...
|