Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
The theory of real-valued Sobolev functions is a classical part of analysis and has a wide range of applications in pure and applied mathematics. By contrast, the study of manifold-valued Sobolev maps is relatively new. The incentive to explore these spaces arose in the last forty years from geometry and physics. This monograph is the first to provide a unified, comprehensive treatment of Sobolev maps to the circle, presenting numerous results obtained by the authors and others. Many surprising connections to other areas of mathematics are explored, including the Monge-Kantorovich theory in optimal transport, items in geometric measure theory, Fourier series, and non-local functionals occurring, for example, as denoising filters in image processing. Numerous digressions provide a glimpse of the theory of sphere-valued Sobolev maps. Each chapter focuses on a single topic and starts with a detailed overview, followed by the most significant results, and rather complete proofs. The "Complements and Open Problems" sections provide short introductions to various subsequent developments or related topics, and suggest newdirections of research. Historical perspectives and a comprehensive list of references close out each chapter. Topics covered include lifting, point and line singularities, minimal connections and minimal surfaces, uniqueness spaces, factorization, density, Dirichlet problems, trace theory, and gap phenomena. Sobolev Maps to the Circle will appeal to mathematicians working in various areas, such as nonlinear analysis, PDEs, geometric analysis, minimal surfaces, optimal transport, and topology. It will also be of interest to physicists working on liquid crystals and the Ginzburg-Landau theory of superconductors.
Philippe B nilan was a most original and charismatic mathematician who had a deep and decisive impact on the theory of Nonlinear Evolution Equations. Dedicated to him, Nonlinear Evolution Equations and Related Topics contains research papers written by highly distinguished mathematicians. They are all related to Philippe Benilan's work and reflect the present state of this most active field. The contributions cover a wide range of nonlinear and linear equations.
The original motivation of this study comes from the following questions that were mentioned to one ofus by H. Matano. Let 2 2 G= B = {x=(X1lX2) E 2; x~ + x~ = Ixl < 1}. 1 Consider the Ginzburg-Landau functional 2 2 (1) E~(u) = ~ LIVul + 4~2 L(lu1 _1)2 which is defined for maps u E H1(G;C) also identified with Hl(G;R2). Fix the boundary condition 9(X) =X on 8G and set H; = {u E H1(G;C); u = 9 on 8G}. It is easy to see that (2) is achieved by some u~ that is smooth and satisfies the Euler equation in G, -~u~ = :2 u~(1 _lu~12) (3) { on aGo u~ =9 Themaximum principleeasily implies (see e.g., F. Bethuel, H. Brezisand F. Helein (2]) that any solution u~ of (3) satisfies lu~1 ~ 1 in G. In particular, a subsequence (u~,.) converges in the w* - LOO(G) topology to a limit u*.
The 39 papers in this collection are devoted mostly to the exact mathematical analysis of problems in continuum mechanics, but also to problems of a purely mathematical nature mainly connected to partial differential equations from continuum physics. All the papers are dedicated to J. Serrin and were originally published in the "Archive of Rational Mechanics and Analysis."
This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.
Boundary element methods relate to a wide range of engineering applications, including fluid flow, fracture analysis, geomechanics, elasticity, and heat transfer. Thus, new results in the field hold great importance not only to researchers in mathematics, but to applied mathematicians, physicists, and engineers. A two-day minisymposium "Mathematical Aspects of Boundary Element Methods" at the IABEM conference in May 1998 brought together top rate researchers from around the world, including Vladimir Maz'ya, to whom the conference was dedicated. Focusing on the mathematical and numerical analysis of boundary integral operators, this volume presents 25 papers contributed to the symposium. Mathematical Aspects of Boundary Element Methods provides up-to-date research results from the point of view of both mathematics and engineering. The authors detail new results, such as on nonsmooth boundaries, and new methods, including domain decomposition and parallelization, preconditioned iterative techniques, multipole expansions, higher order boundary elements, and approximate approximations. Together they illustrate the connections between the modeling of applied problems, the derivation and analysis of corresponding boundary integral equations, and their efficient numerical solutions.
|
You may like...
Little Bird Of Auschwitz - How My Mother…
Alina Peretti, Jacques Peretti
Paperback
1 Recce: Volume 3 - Onsigbaarheid Is Ons…
Alexander Strachan
Paperback
Women In Solitary - Inside The Female…
Shanthini Naidoo
Paperback
(1)
The Death Of Democracy - Hitler's Rise…
Benjamin Carter Hett
Paperback
(1)
|