Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 11 of 11 matches in All Departments
This book covers the basics of abiotic colloid characterization, of biocolloids and biofilms, the resulting transport phenomena and their engineering aspects. The contributors comprise an international group of leading specialists devoted to colloidal sciences. The contributions include theoretical considerations, results from model experiments, and field studies. The information provided here will benefit students and scientists interested in the analytical, chemical, microbiological, geological and hydrological aspects of material transport in aquatic systems and soils.
Until now, techniques for studying biofilms- the cellular colonies that live in drinking water systems, wastewater operations, even ground and surface water- have been limited. Yet during the last decade, biofilms have become a critical element in water quality preservation systems, a key component of wastewater treatment biological reactions and the subject of extensive microbiological inquiry. An understanding of biofilm development, structure and dynamics is one condition for improving water supplies and for addressing technical problems such as biofouling, corrosion and bioweathering. Biofilms: Investigative Methods and Applications provides the first in-depth assessment of current and experimental ways to study biofilms, both in sample form and in situ. It shows how sensors, microscopy, lasers, and calorimetry, among other tools, can be used to obtain data on the morphology and metabolism of biofilms. This text is the first to organize and examine the best methods for investigating biofilms. It covers culture-based methods and emerging nondestructive techniques. It also shows how they can be used to characterize biofilms in a variety of manmade settings, such as sewers, wastewater plants, and drinking water distribution systems, as well as in karsts and groundwater sources. In clarifying the way biofilms are studied, the book offers new insights into these living films. It also applies inquiry techniques to the many problems confronting the environmental specialist-corrosion control, biofouling, and the improvement of fixed reactors in wastewater treatment. At the same time it explains technologies for the controlled growth of biofilms and shows how biofilms can be effectivelymonitored and subjected to quantitative analysis. The technical information in Biofilms: Investigative Methods and Applications is designed to be of use to engineers and researchers and to be helpful in the generation of electronic data.
Biofouling is a costly problem, and it is encountered in a wide spectrum of technical systems, ranging from the shipping industry, power industry, water purification, automobile industry, paint and pharmaceuticals, to the microelectronics and food industries. Micro- and macroorganisms attach to surfaces and accumulate there, forming biofilms that cause interferences - a fundamentally natural process. Usually, a medical paradigm is applied: kill biofilms and the problem is solved. This leads to excessive biocide use. However, the success of this strategy is very limited; furthermore it leads to equipment damage and environmental pollution. Simply trying to kill the fouling organisms is clearly not seen as a successful strategy while cleaning is put forward as much more important. In this book, strategies to prevent adhesion, to mitigate the extent and effects of biofouling, and to detect and remove fouling layers are presented. Holistic approaches to the fouling process are elaborated, taking into account options such as nutrient limitation, repellent and easy-to-clean surfaces for fouling layer limitation, and replacing biocides with more environmentally friendly methods - in other words: learning how to live with fouling biofilms without suffering the damage they can do.
Living in biofilms is the common way of life of microorganisms, transiently immobilized in their matrix of extracellular polymeric substances (EPS), interacting in many ways and using the matrix as an external digestion and protection system. This is how they have organized their life in the environment, in the medical context and in technical systems - and has helped make them the oldest, most successful and ubiquitous form of life. In this book, hot spots in current biofilm research are presented in critical and sometimes provocative chapters. This serves a twofold purpose: to provide an overview and to inspire further discussions. Above all, the book seeks to stimulate lateral thinking.
Corrosion has been largely considered to be caused only abiotically, without regard of any biological influence. However, corrosion of organic materials, metals, minerals and plastics can be strongly influenced by microorganisms, enhancing the kinetics of the corrosion processes. This book presents case histories, theoretical explanations, and methods for the detection, sanitation and prevention of biologically influenced corrosion.
Microbial growth and contamination ("Biofouling") in water systems represents a significant threat to the quality of waters produced for the microelectronic, pharmaceutical, petroleum, paper, food and other manufacturing industries. Biofouling can lead to biologically induced corrosion ("Biocorrosion"), which can cause severe damage to the equipment. Both biofouling and biocorrosion are frequently not recognized in time, underestimated, or linked with the wrong causes. The book represents a new approach by introducing biofilm properties and dynamics as basic principles of biofouling and biocorrosion, thus providing a better understanding and the means of fighting the undesired effects of biofilms. The most important features are: Case histories of biofouling in water treatment.- Detection and monitoring of biofouling.- Reverse osmosis membrane biofouling.- Biocide efficacy and biofouling control.- Plant design considerations for preventing biofouling.- Case histories of biocorrosion.- Detection, monitoring, control and prevention of biocorrosion.- Fundamentals of biofouling and biocorrosion mechanisms.
Microbial extracellular polymeric substances (EPS) are the key components for the aggregation of microorganisms in biofilms, flocs and sludge. They are composed of polysaccharides, proteins, nucleic acids, lipids and other biological macromolecules. EPS provide a highly hydrated gel matrix in which microbial cells can establish stable synergistic consortia. Cohesion and adhesion as well as morphology, structure, biological function and other properties such as mechanical stability, diffusion, sorption and optical properties of microbial aggregates are determined by the EPS matrix. Also, the protection of biofilm organisms against biocides is attributed to the EPS. Their matrix allows phase separation in biofiltration and is also important for the degradation of particulate material which is of great importance for the self purification processes in surface waters and for waste water treatment.
This book covers the basics of abiotic colloid characterization, of biocolloids and biofilms, the resulting transport phenomena and their engineering aspects. The contributors comprise an international group of leading specialists devoted to colloidal sciences. The contributions include theoretical considerations, results from model experiments, and field studies. The information provided here will benefit students and scientists interested in the analytical, chemical, microbiological, geological and hydrological aspects of material transport in aquatic systems and soils.
Was ware die biologische Abwasserreinigung ohne Mikroorganismen? Die Ant wort auf diese Frage ist zweifellos trivial. Nicht trivial ist aber die Antwort auf die Ab Frage nach den Mikroorganismen selbst, die in Anlagen zur biologischen wasserreinigung tatig werden und uns helfen, die Qualitat unserer Grund- und Oberflachengewasser zu verbessern und langfristig auf einem hohen Niveau zu halten. Ober ein Jahrhundert hinweg haben sich Wissenschaftler und Praktiker bemiiht, die Artenzusammensetzung mikrobieller Lebensgemeinschaften in ihrer Abhangigkeit von den vorherrschenden Milieufaktoren erkennen und ver stehen zu lernen. Erst in jiingster Zeit gelingt uns aber ein vertiefter Einblick in die Welt der Belebtschlammflocken und BiofIlme. Neue Analysentechniken und neue Auswertemethoden haben dazu beigetragen, daB heute mehr Licht in das Dunkel der "black box" eindringen kann. Die Entwicklung der biologischen Abwasserreinigung befindet sich an einer Erkenntnisschwelle. Die Belebtschlammflocke hat ihren Namen deshalb erhalten, weil beim Blick durch das Mikroskop sich auch dem ungeiibten Betrachter ein vielfaltiges und bewegtes Treiben eroffnet. Belebtschlamm lebt. Ober Jahrzehnte hinweg standen die Protozoen und niederen Metazoen im Belebtschlamm und Tropfkorper rasen denn auch im Zentrum des Interesses. Verteilung und Haufigkeit des Vorkommens einzelner Leitorganismen wurden gem essen und in Beziehung zu den ProzeBbedingungen gebracht, unter denen die biologische Abwasser reinigungsanlage betrieben wurde. Daraus entwickelten sich die Empfehlungen und Vorschriften, die bis heute fur den Bau und Betrieb biologischer Klaran lagen maBgebend sind."
Membranprozesse sind sehr empfindlich gegen Belagsbildung. Wenn solche Belage aus Mikroorganismen bestehen, spricht man von Biofouling. Biofouling bewirkt eine Verringerung von Permeatleistung und -qualitat und eine Erhohung des Energiebedarfs bei Membranprozessen. In der Praxis gehort Biofouling noch zu den am wenigsten beherrschten Problemen. Heute wird es mit Bioziden bekampft. Die Effektivitat solcher Strategien ist haufig unzureichend, ausserdem entsteht eine erhohte Belastung des Abwassers. In diesem Buch wird detailliert das Hintergrundwissen vermittelt, wie es zu Biofouling kommt, es werden Untersuchungsmethoden vorgestellt, Nachweis- und und Monitoring-Verfahren sowie Gegenmassnahmen und Vermeidungsstrategien aufgezeigt und zukunftige Strategien skizziert.
Was haben Mikrobiologie und Okologie der Abwassertechnik zu bieten? Zur Optimierung der Abwasserreinigung sowie zur Fruherkennung und Vermeidung von Storungen ist es notwendig, die Organismen zu kennen, von denen die Reinigungsleistung vollbracht wird, und zu wissen, welche Wechselwirkungen sie untereinander entwickeln und wie sich Veranderungen des Nahrstoffangebots auf Zusammensetzung und Effektivitat der Population auswirken. Daruberhinaus bietet die mikrobielle Okologie auch Ansatze, die biologischen Ursachen von Schwimmschlamm, Blahschlamm und Schaumbildung besser zu verstehen und ihnen fruhzeitig gezielt entgegenzuwirken. Anhand konkreter Beispiele werden Moglichkeiten und Grenzen klassischer und gentechnischer Methoden zur Charakterisierung der Abwassermikroorganismen demonstriert.
|
You may like...
|