![]() |
![]() |
Your cart is empty |
||
Showing 1 - 6 of 6 matches in All Departments
The present volume summarizes some of the important recent developments in the field of metallic glasses. A variety of new "amorphization" methods such as hydrogen absorption, thermal interdiffusion reactions, irradiation and mechanical alloying are presented and various thermodynamic and experimental aspects of these techniques are discussed in detail. A chapter is devoted to glassy metals used as catalyst precursors yielding metal catalysts with unusual chemical and structural properties. The interrelation between electronic and ionic structures in glassy and liquid metals gives fascinating insights in the basic properties of the non-crystalline state of matter.
Scanning Tunneling Microscopy II, like its predecessor, presents detailed and comprehensive accounts of the basic principles and broad range of applications of STM and related scanning probe techniques. The applications discussed in this volume come predominantly from the fields of electrochemistry and biology. In contrast to those described in Vol. I, these sudies may be performed in air and in liquids. The extensions of the basic technique to map other interactions are described inchapters on scanning force microscopy, magnetic force microscopy, scanning near-field optical microscopy, together with a survey of other related techniques. Also described here is the use of a scanning proximal probe for surface modification. Togehter, the two volumes give a comprehensive account of experimental aspcets of STM. They provide essentialreading and reference material for all students and researchers involvedin this field.
Scanning Tunneling Microscopy I provides a unique introduction to a novel and fascinating technique that produces beautiful images of nature on an atomic scale. It is the first of three volumes that together offer a comprehensive treatment of scanning tunneling microscopy, its diverse applications, and its theoretical treatment. In this volume the reader will find a detailed description of the technique itself and of its applications to metals, semiconductors, layered materials, adsorbed molecules and superconductors. In addition to the many representative results reviewed, extensive references to original work will help to make accessible the vast body of knowledge already accumulated in this field.
Scanning Tunneling Microscopy III provides a unique introduction to
the theoretical foundations of scanning tunneling microscopy and
related scanning probe methods. The different theoretical concepts
developed in the past are outlined, and the implications of the
theoretical results for the interpretation of experimental data are
discussed in detail. Therefore, this book serves as a most useful
guide for experimentalists as well as for theoreticians working in
the field of local probe methods.
Scanning Tunneling Microscopy II, like its predecessor, presents detailed and comprehensive accounts of the basic principles and the broad range of applications of STM and related scanning probe techniques. The applications discussed in this volume come predominantly from the fields of electrochemistry and biology. In contrast to those in STM I, these studies may be performed in air and in liquids. The extensions of the basic technique to map other interactions are described in chapters on scanning force microscopy, magnetic force microscopy, and scanning near-field optical microscopy, together with a survey of other related techniques. Also discussed here is the use of a scanning proximal probe for surface modification. Together, the two volumes give a comprehensive account of experimental aspects of STM and provide essential reading and reference material. In this second edition the text has been updated and new methods are discussed.
Since the first edition of "Scanning 'funneling Microscopy I" has been pub lished, considerable progress has been made in the application of STM to the various classes of materials treated in this volume, most notably in the field of adsorbates and molecular systems. An update of the most recent develop ments will be given in an additional Chapter 9. The editors would like to thank all the contributors who have supplied up dating material, and those who have provided us with suggestions for further improvements. We also thank Springer-Verlag for the decision to publish this second edition in paperback, thereby making this book affordable for an even wider circle of readers. Hamburg, July 1994 R. Wiesendanger Preface to the First Edition Since its invention in 1981 by G. Binnig, H. Rohrer and coworkers at the IBM Zurich Research Laboratory, scanning tunneling microscopy (STM) has devel oped into an invaluable surface analytical technique allowing the investigation of real-space surface structures at the atomic level. The conceptual simplicity of the STM technique is startling: bringing a sharp needle to within a few Angstroms of the surface of a conducting sample and using the tunneling cur rent, which flows on application of a bias voltage, to sense the atomic and elec tronic surface structure with atomic resolution Prior to 1981 considerable scepticism existed as to the practicability of this approach."
|
![]() ![]() You may like...
Avengers: 4-Movie Collection - The…
Robert Downey Jr., Chris Evans, …
Blu-ray disc
R589
Discovery Miles 5 890
|