![]() |
![]() |
Your cart is empty |
||
Showing 1 - 11 of 11 matches in All Departments
Advances in Biological Wastewater Treatment Systems covers different recent advanced technologies, including green technologies, for biological wastewater treatment and wastewater reuse. The technologies involve novel biological processes and/or modified processes coupled with nano materials for improving the performance of the existing treatment processes. The book also describes treatment strategies for the current pollution from complex organic matter, nutrients, toxic substances, micro plastics and emerging micro pollutants in different water resources. The treatment processes describe the recent developed technologies for wastewater treatment and reuse such as biological nutrient removal, bioreactors, photobioreactors, membrane bioreactors, wetlands, algae-bacteria process, natural treatments, integrated/hybrid bio systems, etc. The novel bio systems include aerobic, anaerobic, facultative operation modes with various of types of microorganisms.
Advances in Phytoremediation Technology offers in-depth information regarding the strategies and approaches facilitating the integration of technologies for wastewater treatment. The book highlights the role of hydrophytes, hyperaccumulators and native plants for accumulation and detoxification of industrial wastewater. Various chapters presented in the book are focused on the sustainability approaches as the centre theme to facilitate industries & policymakers in adopting circular economy goals. Since the principle idea of circular bioeconomy is to make transition from linear economy, it involves advanced technological and designing breakthroughs to reduce waste with a closed looped system. This pioneers a cradle to cradle and waste to resources approach. Integration of various technologies has been considered as possible best ways to utilize the industry wastewater treatment.
Biomass, Biofuels, and Biochemicals: Algae-Based Biomaterials for Sustainable Development, Biomedical, Environmental Remediation and Sustainability Assessment, a new release in the Biomass, Biofuels, and Biochemicals series, covers algae-based biomaterials-the green and renewable material that can be produced from various micro- and macro-algae species and utilized for several applications, including biomedical healthcare and environmental remediation. The book provides assessments of the current development of algae-based biomaterials, delivering information on diverse feedstocks and technologies for biomaterial production with a perspective surrounding sustainable development. In addition, circular bioeconomy aspects are included, giving researchers a comprehensive, sustainable development view. This valuable addition to the series delivers a much-needed reference for today's applications in biomedical and environmental remediation.
Circular Bioeconomy: Technologies for Waste Remediation covers information about the strategies and approaches facilitating the integration of technologies for wastewater and solid waste remediation. The book highlights the models developed to valorize wastes to produce biobased products. Various chapters presented in the book put a focus on sustainability approaches as a central theme in order to facilitate industries and policymakers to adopt circular economy goals. Since the principal idea of a circular bioeconomy is to transition from a linear economy, it involves advanced technological and designing breakthroughs to reduce waste with a closed looped system.
The primary concern of environmental sustainability is to: (i) reduce use of physical and depletable resources; (ii) recycle and use renewable resources; (iii) redesign the production process to eliminate the production of toxic materials and protect the environment. Biochar, as a renewable material, can be produced from various sustainable biomass feedstocks through pyrolysis technologies. Biochar Towards Sustainable Environment highlights the contribution of biochar to environmental sustainability. The book provides a detailed overview of the sustainable biomass wastes feedstocks and different technologies for biochar production, and its sustainable applications in various aspects.
Biomass, Biochemicals, Biofuel: Climate Change Mitigation: Sequestration of Green House Gases is designed to not only give basic knowledge on the topics presented, but also to enlighten on conventional and advanced technologies, socioeconomic aspects, techno-economic feasibility, models and modeling tools, and detailed LCA approaches in the sequestration of GHGs for biofuel and biomaterials, including biopolymer production. These innovative technologies and novel prospective directly find applications in day-to-day practices. The book is a useful guide to politicians, researchers, teachers and waste management practitioners. It offers a treasure of knowledge to guide readers on the importance of GHGs sequestration in important areas. The issue of climate change is gaining much more attention by researchers, public, politicians and others. Climate change is one of the most complex issues the world is facing today. It has implications across society, including in science, technology, economics, society, politics, and moral and ethical dilemmas.
Current Developments in Biotechnology and Bioengineering: Emerging Organic Micropollutants summarizes the current knowledge of emerging organic micropollutants in wastewater and the possibilities of their removal/elimination. This book attempts a thorough and exhaustive discussion on ongoing research and future perspectives on advanced treatment methods and future directions to maintain and protect the environment through microbiological, nanotechnological, application of membrane technology, molecular biological and by policymaking means. In addition, the book includes the latest developments in biotechnology and bioengineering pertaining to various aspects in the field of emerging organic micropollutants, including their sources, health effects and environmental impacts.
Current Developments in Biotechnology and Bioengineering: Advanced Membrane Separation Processes for Sustainable Water and Wastewater Management - Aerobic Membrane Bioreactor Processes and Technologies consolidates up-to-date research developments in AeMBR systems for wastewater treatments in terms of membrane materials and decorations, reactor designs and fouling mechanisms. It includes discussions on developments in AeMBR research on energy efficiency and fouling control strategies, gaps, future research and application perspectives. This book is a potential resource for membrane separation and AeMBR practitioners, engineers, scientists, educators and students, and public to understand the latest developments and future prospects in membrane technology.
Current Developments in Biotechnology and Bioengineering: Advanced Membrane Separation Processes for Sustainable Water and Wastewater Management -Anaerobic Membrane Bioreactor Processes and Technologies gives an up-to-date review on research developments of AnMBR systems (including hybrid systems) in wastewater treatment in terms of pollutants removal, nutrients recovery and energy production, as well as the achievement of energy efficiency of the process itself. The current challenges that hinder the application and industrialization of AnMBR technology, knowledge gaps and future research perspectives are also explained and discussed with potential strategies for solving problems. The book is a potential resource for engineers, scientists, educators, students and general public to understand the current developments and future prospects in field of AnMBR research.
Current Developments in Biotechnology and Bioengineering: Advanced Membrane Separation Processes for Sustainable Water and Wastewater Management - Case Studies and Sustainability Analysis gives an up-to-date review and research developments of MBR systems (including hybrid systems) in wastewater treatment in terms of pollutant removal, nutrient recovery, and energy production as well as the achievement of energy efficiency of the process itself. The current challenges that hinder the application and industrialization of MBR technology as well as knowledge gaps and future research perspectives are also discussed, including possible strategies to solve the various problems involved. This work is an excellent reference for education and understanding of biotechnology, microbiology, environmental science and technology, environmental engineering, chemical engineering, biotechnology and bioengineering research and development. It is also an invaluable resource to postgraduate and doctoral students, educators, professional course students, researchers, and wastewater treatment professionals.
Current Developments in Biotechnology and Bioengineering: Biological Treatment of Industrial Effluents provides extensive coverage of new developments, state-of-the-art technologies, and potential future trends in data-based scientific knowledge and advanced information on the role and application of environmental biotechnology and engineering in the treatment of industrial effluents. These treatment processes have been broadly classified under aerobic and anaerobic processes which determines the scope and level of pollutant removal. Chapters in this volume review the most recent developments and perspectives at different environmental cleanup operation scales.
|
![]() ![]() You may like...
Job Hazard Analysis - A guide for…
James Roughton, Nathan Crutchfield
Hardcover
Climate Innovation - Liberal Capitalism…
N. Harrison, J Mikler
Hardcover
R3,573
Discovery Miles 35 730
Budget of the U.S. Government, Fiscal…
Executive Office of the President
Paperback
R786
Discovery Miles 7 860
|