Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 10 of 10 matches in All Departments
Man sollte weniger danach streben, die Grenzen der mathe- matischen Wissenschaften zu erweitern, als vielmehr danach, den bereits vorhandenen Stoff aus umfassenderen Gesichts- punkten zu betrachten - E. Study Today most mathematicians who know about Kronecker's theory of divisors know about it from having read Hermann Weyl's lectures on algebraic number theory [We], and regard it, as Weyl did, as an alternative to Dedekind's theory of ideals. Weyl's axiomatization of what he calls "Kronecker's" theory is built-as Dedekind's theory was built-around unique factor- ization. However, in presenting the theory in this way, Weyl overlooks one of Kronecker's most valuable ideas, namely, the idea that the objective of the theory is to define greatest com- mon divisors, not to achieve factorization into primes. The reason Kronecker gave greatest common divisors the primary role is simple: they are independent of the ambient field while factorization into primes is not. The very notion of primality depends on the field under consideration-a prime in one field may factor in a larger field-so if the theory is founded on factorization into primes, extension of the field entails a completely new theory. Greatest common divisors, on the other hand, can be defined in a manner that does not change at all when the field is extended (see 1.16). Only after he has laid the foundation of the theory of divisors does Kronecker consider factorization of divisors into divisors prime in some specified field.
This introduction to algebraic number theory via the famous problem of "Fermats Last Theorem" follows its historical development, beginning with the work of Fermat and ending with Kummers theory of "ideal" factorization. The more elementary topics, such as Eulers proof of the impossibilty of x+y=z, are treated in an uncomplicated way, and new concepts and techniques are introduced only after having been motivated by specific problems. The book also covers in detail the application of Kummers theory to quadratic integers and relates this to Gauss'theory of binary quadratic forms, an interesting and important connection that is not explored in any other book.
Contents and treatment are fresh and very different from the standard treatments Presents a fully constructive version of what it means to do algebra The exposition is not only clear, it is friendly, philosophical, and considerate even to the most naive or inexperienced reader
Contents and treatment are fresh and very different from the standard treatments Presents a fully constructive version of what it means to do algebra The exposition is not only clear, it is friendly, philosophical, and considerate even to the most naive or inexperienced reader
In a book written for mathematicians, teachers of mathematics, and highly motivated students, Harold Edwards has taken a bold and unusual approach to the presentation of advanced calculus. He begins with a lucid discussion of differential forms and quickly moves to the fundamental theorems of calculus and Stokes theorem. The result is genuine mathematics, both in spirit and content, and an exciting choice for an honors or graduate course or indeed for any mathematician in need of a refreshingly informal and flexible reintroduction to the subject. For all these potential readers, the author has made the approach work in the best tradition of creative mathematics. This affordable softcover reprint of the 1994 edition presents the diverse set of topics from which advanced calculus courses are created in beautiful unifying generalization. The author emphasizes the use of differential forms in linear algebra, implicit differentiation in higher dimensions using the calculus of differential forms, and the method of Lagrange multipliers in a general but easy-to-use formulation. There are copious exercises to help guide the reader in testing understanding. The chapters can be read in almost any order, including beginning with the final chapter that contains some of the more traditional topics of advanced calculus courses. In addition, it is ideal for a course on vector analysis from the differential forms point of view. The professional mathematician will find here a delightful example of mathematical literature; the student fortunate enough to have gone through this book will have a firm grasp of the nature of modern mathematics and a solid framework to continue to more advanced studies. "The most important feature is that it is fun it is fun to read the exercises, it is fun to read the comments printed in the margins, it is fun simply to pick a random spot in the book and begin reading. This is the way mathematics should be presented, with an excitement and liveliness that show why we are interested in the subject." The American Mathematical Monthly (First Review) "An inviting, unusual, high-level introduction to vector calculus, based solidly on differential forms. Superb exposition: informal but sophisticated, down-to-earth but general, geometrically rigorous, entertaining but serious. Remarkable diverse applications, physical and mathematical." The American Mathematical Monthly (1994) Based on the Second Edition"
0. A Theorem of Polynomial Algebra.- 1. The General Theory.- 2. Applications to Algebraic Number Theory.- 3. Applications to the Theory of Algebraic Curves.- References.
* Proposes a radically new and thoroughly algorithmic approach to linear algebra * Each proof is an algorithm described in English that can be
translated into the computer language the class is using and put to
work solving problems and generating new examples
This introduction to algebraic number theory via the famous problem of "Fermats Last Theorem" follows its historical development, beginning with the work of Fermat and ending with Kummers theory of "ideal" factorization. The more elementary topics, such as Eulers proof of the impossibilty of x+y=z, are treated in an uncomplicated way, and new concepts and techniques are introduced only after having been motivated by specific problems. The book also covers in detail the application of Kummers theory to quadratic integers and relates this to Gauss'theory of binary quadratic forms, an interesting and important connection that is not explored in any other book.
This is an introduction to Galois Theory along the lines of Galois 's Memoir on the Conditions for Solvability of Equations by Radicals. It puts Galois 's ideas into historical perspective by tracing their antecedents in the works of Gauss, Lagrange, Newton, and even the ancient Babylonians. It also explains the modern formulation of the theory. It includes many exercises, with their answers, and an English translation of Galois 's memoir.
In a book written for mathematicians, teachers of mathematics, and highly motivated students, Harold Edwards has taken a bold and unusual approach to the presentation of advanced calculus. He begins with a lucid discussion of differential forms and quickly moves to the fundamental theorems of calculus and Stokes' theorem. The result is genuine mathematics, both in spirit and content, and an exciting choice for an honors or graduate course or indeed for any mathematician in need of a refreshingly informal and flexible reintroduction to the subject. For all these potential readers, the author has made the approach work in the best tradition of creative mathematics. This affordable softcover reprint of the 1994 edition presents the diverse set of topics from which advanced calculus courses are created in beautiful unifying generalization. The author emphasizes the use of differential forms in linear algebra, implicit differentiation in higher dimensions using the calculus of differential forms, and the method of Lagrange multipliers in a general but easy-to-use formulation. There are copious exercises to help guide the reader in testing understanding. The chapters can be read in almost any order, including beginning with the final chapter that contains some of the more traditional topics of advanced calculus courses. In addition, it is ideal for a course on vector analysis from the differential forms point of view. The professional mathematician will find here a delightful example of mathematical literature; the student fortunate enough to have gone through this book will have a firm grasp of the nature of modern mathematics and a solid framework to continue to more advance studies. The most important feature...is that it is fun-it is fun to read the exercises, it is fun to read the comments printed in the margins, it is fun simply to pick a random spot in the book and begin reading. This is the way mathematics should be presented, with an excitement and liveliness that show why we are interested in the subject. -The American Mathematical Monthly (First Review) An inviting, unusual, high-level introduction to vector calculus, based solidly on differential forms. Superb exposition: informal but sophisticated, down-to-earth but general, geometrically rigorous, entertaining but serious. Remarkable diverse applications, physical and mathematical. -The American Mathematical Monthly (1994) Based on the Second Edition
|
You may like...
Westworld - Season 4 - The Choice
Evan Rachel Wood, Thandiwe Newton, …
DVD
R371
Discovery Miles 3 710
|