Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 9 of 9 matches in All Departments
This volume presents original research articles and extended surveys related to the mathematical interest and work of Jean-Michel Bismut. His outstanding contributions to probability theory and global analysis on manifolds have had a profound impact on several branches of mathematics in the areas of control theory, mathematical physics and arithmetic geometry. Contributions by: K. Behrend N. Bergeron S. K. Donaldson J. Dubedat B. Duplantier G. Faltings E. Getzler G. Kings R. Mazzeo J. Millson C. Moeglin W. Muller R. Rhodes D. Roessler S. Sheffield A. Teleman G. Tian K-I. Yoshikawa H. Weiss W. Werner The collection is a valuable resource for graduate students and researchers in these fields.
This book pioneers a nonlinear Fredholm theory in a general class of spaces called polyfolds. The theory generalizes certain aspects of nonlinear analysis and differential geometry, and combines them with a pinch of category theory to incorporate local symmetries. On the differential geometrical side, the book introduces a large class of `smooth' spaces and bundles which can have locally varying dimensions (finite or infinite-dimensional). These bundles come with an important class of sections, which display properties reminiscent of classical nonlinear Fredholm theory and allow for implicit function theorems. Within this nonlinear analysis framework, a versatile transversality and perturbation theory is developed to also cover equivariant settings. The theory presented in this book was initiated by the authors between 2007-2010, motivated by nonlinear moduli problems in symplectic geometry. Such problems are usually described locally as nonlinear elliptic systems, and they have to be studied up to a notion of isomorphism. This introduces symmetries, since such a system can be isomorphic to itself in different ways. Bubbling-off phenomena are common and have to be completely understood to produce algebraic invariants. This requires a transversality theory for bubbling-off phenomena in the presence of symmetries. Very often, even in concrete applications, geometric perturbations are not general enough to achieve transversality, and abstract perturbations have to be considered. The theory is already being successfully applied to its intended applications in symplectic geometry, and should find applications to many other areas where partial differential equations, geometry and functional analysis meet. Written by its originators, Polyfold and Fredholm Theory is an authoritative and comprehensive treatise of polyfold theory. It will prove invaluable for researchers studying nonlinear elliptic problems arising in geometric contexts.
Andreas Floer died on May 15, 1991 an untimely and tragic death. His visions and far-reaching contributions have significantly influenced the developments of mathematics. His main interests centered on the fields of dynamical systems, symplectic geometry, Yang-Mills theory and low dimensional topology. Motivated by the global existence problem of periodic solutions for Hamiltonian systems and starting from ideas of Conley, Gromov and Witten, he developed his Floer homology, providing new, powerful methods which can be applied to problems inaccessible only a few years ago. This volume opens with a short biography and three hitherto unpublished papers of Andreas Floer. It then presents a collection of invited contributions, and survey articles as well as research papers on his fields of interest, bearing testimony of the high esteem and appreciation this brilliant mathematician enjoyed among his colleagues. Authors include: A. Floer, V.I. Arnold, M. Atiyah, M. Audin, D.M. Austin, S.M. Bates, P.J. Braam, M. Chaperon, R.L. Cohen, G. Dell' Antonio, S.K. Donaldson, B. D'Onofrio, I. Ekeland, Y. Eliashberg, K.D. Ernst, R. Finthushel, A.B. Givental, H. Hofer, J.D.S. Jones, I. McAllister, D. McDuff, Y.-G. Oh, L. Polterovich, D.A. Salamon, G.B. Segal, R. Stern, C.H. Taubes, C. Viterbo, A. Weinstein, E. Witten, E. Zehnder
This volume presents original research articles and extended surveys related to the mathematical interest and work of Jean-Michel Bismut. His outstanding contributions to probability theory and global analysis on manifolds have had a profound impact on several branches of mathematics in the areas of control theory, mathematical physics and arithmetic geometry. Contributions by: K. Behrend N. Bergeron S. K. Donaldson J. Dubedat B. Duplantier G. Faltings E. Getzler G. Kings R. Mazzeo J. Millson C. Moeglin W. Muller R. Rhodes D. Roessler S. Sheffield A. Teleman G. Tian K-I. Yoshikawa H. Weiss W. Werner The collection is a valuable resource for graduate students and researchers in these fields.
Analysis of an old variational principal in classical mechanics has established global periodic phenomena in Hamiltonian systems. One of the links is a class of sympletic invariants, called sympletic capacities, and these invariants are the main theme of this book. Topics covered include basic sympletic geometry, sympletic capacities and rigidity, sympletic fixed point theory, and a survey on Floer homology and sympletic homology.
Andreas Floer died on May 15, 1991 an untimely and tragic death. His visions and far-reaching contributions have significantly influenced the developments of mathematics. His main interests centered on the fields of dynamical systems, symplectic geometry, Yang-Mills theory and low dimensional topology. Motivated by the global existence problem of periodic solutions for Hamiltonian systems and starting from ideas of Conley, Gromov and Witten, he developed his Floer homology, providing new, powerful methods which can be applied to problems inaccessible only a few years ago. This volume opens with a short biography and three hitherto unpublished papers of Andreas Floer. It then presents a collection of invited contributions, and survey articles as well as research papers on his fields of interest, bearing testimony of the high esteem and appreciation this brilliant mathematician enjoyed among his colleagues. Authors include: A. Floer, V.I. Arnold, M. Atiyah, M. Audin, D.M. Austin, S.M. Bates, P.J. Braam, M. Chaperon, R.L. Cohen, G. Dell' Antonio, S.K. Donaldson, B. D'Onofrio, I. Ekeland, Y. Eliashberg, K.D. Ernst, R. Finthushel, A.B. Givental, H. Hofer, J.D.S. Jones, I. McAllister, D. McDuff, Y.-G. Oh, L. Polterovich, D.A. Salamon, G.B. Segal, R. Stern, C.H. Taubes, C. Viterbo, A. Weinstein, E. Witten, E. Zehnder
The discoveries of the last decades have opened new perspectives for the old field of Hamiltonian systems and led to the creation of a new field: symplectic topology. Surprising rigidity phenomena demonstrate that the nature of symplectic mappings is very different from that of volume preserving mappings. This raises new questions, many of them still unanswered. On the other hand, analysis of an old variational principle in classical mechanics has established global periodic phenomena in Hamiltonian systems. As it turns out, these seemingly different phenomena are mysteriously related. One of the links is a class of symplectic invariants, called symplectic capacities. These invariants are the main theme of this book, which includes such topics as basic symplectic geometry, symplectic capacities and rigidity, periodic orbits for Hamiltonian systems and the action principle, a bi-invariant metric on the symplectic diffeomorphism group and its geometry, symplectic fixed point theory, the Arnold conjectures and first order elliptic systems, and finally a survey on Floer homology and symplectic homology. The exposition is self-contained and addressed to researchers and students from the graduate level onwards.
This volume contains a collection of papers based on lectures delivered by distinguished mathematicians at Clay Mathematics Institute events over the past few years. It is intended to be the first in an occasional series of volumes of CMI lectures. Although not explicitly linked, the topics in this inaugural volume have a common flavour and a common appeal to all who are interested in recent developments in geometry. They are intended to be accessible to all who work in this general area, regardless of their own particular research interests.
This book explains the foundations of holomorphic curve theory in contact geometry. By using a particular geometric problem as a starting point the authors guide the reader into the subject. As such it ideally serves as preparation and as entry point for a deeper study of the analysis underlying symplectic field theory. An introductory chapter sets the stage explaining some of the basic notions of contact geometry and the role of holomorphic curves in the field. The authors proceed to the heart of the material providing a detailed exposition about finite energy planes and periodic orbits (chapter 4) to disk filling methods and applications (chapter 9).The material is self-contained. It includes a number of technical appendices giving the geometric analysis foundations for the main results, so that one may easily follow the discussion. Graduate students as well as researchers who want to learn the basics of this fast developing theory will highly appreciate this accessible approach taken by the authors.
|
You may like...
Wild About You - A 60-Day Devotional For…
John Eldredge, Stasi Eldredge
Hardcover
R309
Discovery Miles 3 090
|