![]() |
![]() |
Your cart is empty |
||
Showing 1 - 8 of 8 matches in All Departments
The aim of this book is to offer to the next generation of young researchers a broad and largely self-contained introduction to the physics of heavy ion collisions and the quark-gluon plasma, providing material beyond that normally found in the available textbooks. For each of the main aspects - QCD thermodynamics and global features of the QGP, collision hydrodynamics, electromagnetic probes, jet and quarkonium production, color glass condensate, and the gravity connection - the present volume provides extensive and pedagogical lectures, surveying the present status of both theory and experiment. A particular feature of this volume is that all lectures have been written with the active assistance of selected students present at the course in order to ensure the adequate level and coverage for the intended readership.
Flocks of birds, schools of fish and swarms of locusts display amazing forms of collective motion, while huge numbers of glow worms can emit light signals with almost unbelievable synchronization. These and many other collective phenomena in animal societies take place according to laws very similar to those governing the collective behavior in the inanimate nature, such as the magnetization of iron and the light radiation of lasers. During recent years, this has led to the study of swarm behavior as a challenging new field of science, in which ideas from the physical world are applied in order to understand the formation and structure of animal swarms. From these studies, it has become clear that such collective behavior of animals emerges in a self-organized way, without any need of overall coordination. In this book, we present different swarm phenomena of the animal world and compare them to their counterparts in physics, in a conceptual and non-technical way, addressed to a general readership.
In the last hundred years, modern physics and cosmology have shown that there exist regions of the universe forever beyond our reach, hidden by truly ultimate horizons. Such regions exist in those remote parts of the universe where, from our point of view, space expands faster than the speed of light. They are found in black holes, where the gravity is strong enough to retain even light within its field of attraction. And in the realm of the very small, quarks must remain forever confined to their world of extreme density and can never be removed from it. The aim of this book is to describe these ultimate horizons, how they were discovered, how they shape our view of the world, and what clues we have about a world beyond them.
The aim of this book is to offer to the next generation of young researchers a broad and largely self-contained introduction to the physics of heavy ion collisions and the quark-gluon plasma, providing material beyond that normally found in the available textbooks. For each of the main aspects - QCD thermodynamics and global features of the QGP, collision hydrodynamics, electromagnetic probes, jet and quarkonium production, color glass condensate, and the gravity connection - the present volume provides extensive and pedagogical lectures, surveying the present status of both theory and experiment. A particular feature of this volume is that all lectures have been written with the active assistance of selected students present at the course in order to ensure the adequate level and coverage for the intended readership.
From the Editors Preface: ""Quark Matter 1987" was attended by about 250 scientists, representing 75 research institutions around the world - the scientific community engaged in experimental and theoretical studies of high energy nuclear collisions. The central theme of the meeting was the possibility of achieving extreme energy densities in extended systems of strongly interacting matter - with the ultimate aim of creating in the laboratory a deconfined state of matter, a state in which quarks and gluons attain the active degrees of freedom. High energy accelerator beams and cosmic radiation projectiles provide the experimental tools for this endeavour; on the theoretical side, it is intimately connected to recent developments in the non-perturbative study of quantum chromodynamics. Phase transitions between hadronic matter and quark-gluon plasma are of basic interest also for our understanding of the dynamics of the early universe ... A very special feature of this Sixth Quark Matter Conference was the advent of the first experimental results from dedicated accelerator studies. These were conducted during 1986/87 at the AGS of Brookhaven National Laboratory ... and at the CERN SPS ... An intense discussion of these data formed the main activity of the meeting.
This volume contains the Proceedings of'the International Workshop "Lattice Gauge Theory 1986," held at Brookhaven National Laboratory, September 15 - 19, 1986. The meeting was the sequel to the one held at Wuppertal in 1985, the Proceedings of which have appeared in the same Plenum series. During the past few years, a considerable number of meetings on lat tice gauge theory have been held, on both sides of the Atlantic. With our workshop, through early planning and coordination with other prospective organizers, we tried to channel this activity into one major yearly meeting. For 1986, these efforts were successful, and it is our hope that a pattern has been set for the coming years. One result, however, was that the number of participants considerably exceeded that normally found at NATO Advanced Research Workshops. This year, a "nucleus" of NATO-supported experts induced a large number of further interested specialists to obtain their own funds - thus greatly amplifying the impact of the event. The topics covered at the workshop ranged from hadron spectra to strong interaction thermo dynamics; they included spontaneous symmetry breaking and Higgs models, renormalization group methods, as well as many contributions on various possible schemes for the simulation of dynamical quarks. First systematic applications of finite size scaling to lattice gauge theory were discussed, and the approach to the continuum limit was considered in detail."
From physics to information theory and cosmology, from the structure of animal societies to the linguistic analysis of human writing, systems consisting of many interacting constituents often show a collective behaviour not predictable from the interaction of the individual constituents. In More than the Sum of the Parts, Helmut Satz addresses different forms of this complex behaviour, which have been thoroughly investigated only in the past decades. Although these studies originate in physics, the behaviour is found to be universal, ranging from the structure of the early universe to the formation of flocks of birds, and to the frequency of words in literary texts. Complexity is thus becoming an increasingly important interdisciplinary field for future scientific research. In a conceptual and non-technical way, Satz opens up this exciting field for a general readership and those studying any field of the natural sciences.
What is the origin of the universe? What was there before the universe appeared? We are currently witnessing a second Copernican revolution: neither our Earth and Sun, nor our galaxy, nor even our universe, are the end of all things. Beyond our world, in an endless multiverse, are innumerable other universes, coming and going, like ours or different. Fourteen billion years ago, one of the many bubbles constantly appearing and vanishing in the multiverse exploded to form our universe. The energy liberated in the explosion provided the basis for all the matter our universe now contains. But how could this hot, primordial plasma eventually produce the complex structure of our present world? Does not order eventually always lead to disorder, to an increase of entropy? Modern cosmology is beginning to find out how it all came about and where it all might lead. Before Time Began tells that story.
|
![]() ![]() You may like...Not available
|