Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 25 of 33 matches in All Departments
This book discusses significant research and study topics related to mathematical modelling and analysis of infectious diseases. It includes several models and modelling approaches with different aims, such as identifying and analysing causes of occurrence and re-occurrence, causes of spreading, treatments and control strategies. A valuable resource for researchers, students, educators, scientists, professionals and practitioners interested in gaining insights into various aspects of infectious diseases using mathematical modelling and mathematical analysis, the book will also appeal to general readers wanting to understand the dynamics of various diseases and related issues. Key Features Mathematical models that describe population prevalence or incidence of infectious diseases Mathematical tools and techniques to analyse data on the incidence of infectious diseases Early detection and risk estimate models of infectious diseases Mathematical models that describe the transmission of infectious diseases and analyse data Dynamical analysis and control strategies for infectious diseases Studies comparing the utility of particular models in describing infected diseases-related issues such as social, health and economic
This book introduces readers to numerous multiplicative inverse functional equations and their stability results in various spaces. This type of functional equation can be of use in solving many physical problems and also has significant relevance in various scientific fields of research and study. In particular, multiplicative inverse functional equations have applications in electric circuit theory, physics, and relations connecting the harmonic mean and arithmetic mean of several values. Providing a wealth of essential insights and new concepts in the field of functional equations, the book is chiefly intended for researchers, graduate schools, graduate students, and educators, and can also used for seminars in analysis covering topics of functional equations.
This book addresses key aspects of recent developments in applied mathematical analysis and its use. It also highlights a broad range of applications from science, engineering, technology and social perspectives. Each chapter investigates selected research problems and presents a balanced mix of theory, methods and applications for the chosen topics. Special emphasis is placed on presenting basic developments in applied mathematical analysis, and on highlighting the latest advances in this research area. The book is presented in a self-contained manner as far as possible, and includes sufficient references to allow the interested reader to pursue further research in this still-developing field. The primary audience for this book includes graduate students, researchers and educators; however, it will also be useful for general readers with an interest in recent developments in applied mathematical analysis and applications.
This book includes different topics associated with integral and integro-differential equations and their relevance and significance in various scientific areas of study and research. Integral and integro-differential equations are capable of modelling many situations from science and engineering. Readers should find several useful and advanced methods for solving various types of integral and integro-differential equations in this book. The book is useful for graduate students, Ph.D. students, researchers and educators interested in mathematical modelling, applied mathematics, applied sciences, engineering, etc. Key Features * New and advanced methods for solving integral and integro-differential equations * Contains comparison of various methods for accuracy * Demonstrates the applicability of integral and integro-differential equations in other scientific areas * Examines qualitative as well as quantitative properties of solutions of various types of integral and integro-differential equations
This book discusses recent developments in and contemporary research on summability theory, including general summability methods, direct theorems on summability, absolute and strong summability, special methods of summability, functional analytic methods in summability, and related topics and applications. All contributing authors are eminent scientists, researchers and scholars in their respective fields, and hail from around the world. The book can be used as a textbook for graduate and senior undergraduate students, and as a valuable reference guide for researchers and practitioners in the fields of summability theory and functional analysis. Summability theory is generally used in analysis and applied mathematics. It plays an important part in the engineering sciences, and various aspects of the theory have long since been studied by researchers all over the world.
This book deals with two important branches of mathematics, namely, logic and set theory. Logic and set theory are closely related and play very crucial roles in the foundation of mathematics, and together produce several results in all of mathematics. The topics of logic and set theory are required in many areas of physical sciences, engineering, and technology. The book offers solved examples and exercises, and provides reasonable details to each topic discussed, for easy understanding. The book is designed for readers from various disciplines where mathematical logic and set theory play a crucial role. The book will be of interested to students and instructors in engineering, mathematics, computer science, and technology.
Presents theory, methods, and applications in a balanced manner Contains the most recent advances Written in a self-contained manner with proof of all results Provides research comprehension questions to help prepare researchers in completing their proposals Written by well-established researchers from renowned departments and laboratories
This book explores several important aspects of recent developments in the interdisciplinary applications of mathematical analysis (MA), and highlights how MA is now being employed in many areas of scientific research. Each of the 23 carefully reviewed chapters was written by experienced expert(s) in respective field, and will enrich readers' understanding of the respective research problems, providing them with sufficient background to understand the theories, methods and applications discussed. The book's main goal is to highlight the latest trends and advances, equipping interested readers to pursue further research of their own. Given its scope, the book will especially benefit graduate and PhD students, researchers in the applied sciences, educators, and engineers with an interest in recent developments in the interdisciplinary applications of mathematical analysis.
This book provides an introduction to basic topics in Real Analysis and makes the subject easily understandable to all learners. The book is useful for those that are involved with Real Analysis in disciplines such as mathematics, engineering, technology, and other physical sciences. It provides a good balance while dealing with the basic and essential topics that enable the reader to learn the more advanced topics easily. It includes many examples and end of chapter exercises including hints for solutions in several critical cases. The book is ideal for students, instructors, as well as those doing research in areas requiring a basic knowledge of Real Analysis. Those more advanced in the field will also find the book useful to refresh their knowledge of the topic. Features Includes basic and essential topics of real analysis Adopts a reasonable approach to make the subject easier to learn Contains many solved examples and exercise at the end of each chapter Presents a quick review of the fundamentals of set theory Covers the real number system Discusses the basic concepts of metric spaces and complete metric spaces
This book contains fundamental concepts on discrete mathematical structures in an easy to understand style so that the reader can grasp the contents and explanation easily. The concepts of discrete mathematical structures have application to computer science, engineering and information technology including in coding techniques, switching circuits, pointers and linked allocation, error corrections, as well as in data networking, Chemistry, Biology and many other scientific areas. The book is for undergraduate and graduate levels learners and educators associated with various courses and progammes in Mathematics, Computer Science, Engineering and Information Technology. The book should serve as a text and reference guide to many undergraduate and graduate programmes offered by many institutions including colleges and universities. Readers will find solved examples and end of chapter exercises to enhance reader comprehension. Features Offers comprehensive coverage of basic ideas of Logic, Mathematical Induction, Graph Theory, Algebraic Structures and Lattices and Boolean Algebra Provides end of chapter solved examples and practice problems Delivers materials on valid arguments and rules of inference with illustrations Focuses on algebraic structures to enable the reader to work with discrete structures
Topics in Contemporary Mathematical Analysis and Applications encompasses several contemporary topics in the field of mathematical analysis, their applications, and relevancies in other areas of research and study. The readers will find developments concerning the topics presented to a reasonable extent with various new problems for further study. Each chapter carefully presents the related problems and issues, methods of solutions, and their possible applications or relevancies in other scientific areas. Aims at enriching the understanding of methods, problems, and applications Offers an understanding of research problems by presenting the necessary developments in reasonable details Discusses applications and uses of operator theory, fixed-point theory, inequalities, bi-univalent functions, functional equations, and scalar-objective programming, and presents various associated problems and ways to solve such problems This book is written for individual researchers, educators, students, and department libraries.
Advanced Topics in Mathematical Analysis is aimed at researchers, graduate students, and educators with an interest in mathematical analysis, and in mathematics more generally. The book aims to present theory, methods, and applications of the selected topics that have significant, useful relevance to contemporary research.
This book presents several aspects of research on mathematics that have significant applications in engineering, modelling and social matters, discussing a number of current and future social issues and problems in which mathematical tools can be beneficial. Each chapter enhances our understanding of the research problems in a particular an area of study and highlights the latest advances made in that area. The self-contained contributions make the results and problems discussed accessible to readers, and provides references to enable those interested to follow subsequent studies in still developing fields. Presenting real-world applications, the book is a valuable resource for graduate students, researchers and educators. It appeals to general readers curious about the practical applications of mathematics in diverse scientific areas and social problems.
The book aims to present several new results concerning solution and various stabilities of some functional equations in various spaces. The chapters consider various spaces to investigate stabilities justifying that stability results hold well in those spaces. It also includes results proving new insight to analyze approximate solutions to a given equation whenever uncertainty occurs. The presentation of the book should be useful for graduated students and researchers interested in the theory of functional equations to understand the useful ideas involved and problems to study further.
Advanced Topics in Mathematical Analysis is aimed at researchers, graduate students, and educators with an interest in mathematical analysis, and in mathematics more generally. The book aims to present theory, methods, and applications of the selected topics that have significant, useful relevance to contemporary research.
The aim of Summable Spaces and Their Duals, Matrix Transformations and Geometric Properties is to discuss primarily about different kinds of summable spaces, compute their duals and then characterize several matrix classes transforming one summable space into other. The book also discusses several geometric properties of summable spaces, as well as dealing with the construction of summable spaces using Orlicz functions, and explores several structural properties of such spaces. Each chapter contains a conclusion section highlighting the importance of results, and points the reader in the direction of possible new ideas for further study. Features Suitable for graduate schools, graduate students, researchers and faculty, and could be used as a key text for special Analysis seminars Investigates different types of summable spaces and computes their duals Characterizes several matrix classes transforming one summable space into other Discusses several geometric properties of summable spaces Examines several possible generalizations of Orlicz sequence spaces
This book includes different topics associated with integral and integro-differential equations and their relevance and significance in various scientific areas of study and research. Integral and integro-differential equations are capable of modelling many situations from science and engineering. Readers should find several useful and advanced methods for solving various types of integral and integro-differential equations in this book. The book is useful for graduate students, Ph.D. students, researchers and educators interested in mathematical modelling, applied mathematics, applied sciences, engineering, etc. Key Features * New and advanced methods for solving integral and integro-differential equations * Contains comparison of various methods for accuracy * Demonstrates the applicability of integral and integro-differential equations in other scientific areas * Examines qualitative as well as quantitative properties of solutions of various types of integral and integro-differential equations
This book discusses significant research and study topics related to mathematical modelling and analysis of infectious diseases. It includes several models and modelling approaches with different aims, such as identifying and analysing causes of occurrence and re-occurrence, causes of spreading, treatments and control strategies. A valuable resource for researchers, students, educators, scientists, professionals and practitioners interested in gaining insights into various aspects of infectious diseases using mathematical modelling and mathematical analysis, the book will also appeal to general readers wanting to understand the dynamics of various diseases and related issues. Key Features Mathematical models that describe population prevalence or incidence of infectious diseases Mathematical tools and techniques to analyse data on the incidence of infectious diseases Early detection and risk estimate models of infectious diseases Mathematical models that describe the transmission of infectious diseases and analyse data Dynamical analysis and control strategies for infectious diseases Studies comparing the utility of particular models in describing infected diseases-related issues such as social, health and economic
The volume contains original research papers as the Proceedings of the International Conference on Advances in Mathematics and Computing, held at Veer Surendra Sai University of Technology, Odisha, India, on 7-8 February, 2020. It focuses on new trends in applied analysis, computational mathematics and related areas. It also includes certain new models, image analysis technique, fluid flow problems, etc. as applications of mathematical analysis and computational mathematics. The volume should bring forward new and emerging topics of mathematics and computing having potential applications and uses in other areas of sciences. It can serve as a valuable resource for graduate students, researchers and educators interested in mathematical tools and techniques for solving various problems arising in science and engineering.
This book introduces readers to numerous multiplicative inverse functional equations and their stability results in various spaces. This type of functional equation can be of use in solving many physical problems and also has significant relevance in various scientific fields of research and study. In particular, multiplicative inverse functional equations have applications in electric circuit theory, physics, and relations connecting the harmonic mean and arithmetic mean of several values. Providing a wealth of essential insights and new concepts in the field of functional equations, the book is chiefly intended for researchers, graduate schools, graduate students, and educators, and can also used for seminars in analysis covering topics of functional equations.
This book is a collection of original research papers as proceedings of the 6th International Congress of the Moroccan Society of Applied Mathematics organized by Sultan Moulay Slimane University, Morocco, during 7th-9th November 2019. It focuses on new problems, applications and computational methods in the field of nonlinear analysis. It includes various topics including fractional differential systems of various types, time-fractional systems, nonlinear Jerk equations, reproducing kernel Hilbert space method, thrombin receptor activation mechanism model, labour force evolution model, nonsmooth vector optimization problems, anisotropic elliptic nonlinear problem, viscous primitive equations of geophysics, quadratic optimal control problem, multi-orthogonal projections and generalized continued fractions. The conference aimed at fostering cooperation among students, researchers and experts from diverse areas of applied mathematics and related sciences through fruitful deliberations on new research findings. This book is expected to be resourceful for researchers, educators and graduate students interested in applied mathematics and interactions of mathematics with other branches of science and engineering.
This book presents several aspects of research on mathematics that have significant applications in engineering, modelling and social matters, discussing a number of current and future social issues and problems in which mathematical tools can be beneficial. Each chapter enhances our understanding of the research problems in a particular an area of study and highlights the latest advances made in that area. The self-contained contributions make the results and problems discussed accessible to readers, and provides references to enable those interested to follow subsequent studies in still developing fields. Presenting real-world applications, the book is a valuable resource for graduate students, researchers and educators. It appeals to general readers curious about the practical applications of mathematics in diverse scientific areas and social problems.
This book presents a collection of original research papers from the 2nd International Conference on Mathematical and Related Sciences, held in Antalya, Turkey, on 27 - 30 April 2019 and sponsored/supported by Duzce University, Turkey; the University of Jordan; and the Institute of Applied Mathematics, Baku State University, Azerbaijan. The book focuses on various types of mathematical methods and models in applied sciences; new mathematical tools, techniques and algorithms related to various branches of applied sciences; and important aspects of applied mathematical analysis. It covers mathematical models and modelling methods related to areas such as networks, intelligent systems, population dynamics, medical science and engineering, as well as a wide variety of analytical and numerical methods. The conference aimed to foster cooperation among students, researchers and experts from diverse areas of mathematics and related sciences and to promote fruitful exchanges on crucial research in the field. This book is a valuable resource for graduate students, researchers and educators interested in applied mathematics and interactions of mathematics with other branches of science to provide insights into analysing, modelling and solving various scientific problems in applied sciences.
This book gathers original research papers presented at the 4th International Conference on Computational Mathematics and Engineering Sciences, held at Akdeniz University, Antalya, Turkey, on 20-22 April 2019. Focusing on computational methods in science, mathematical tools applied to engineering, mathematical modeling and new aspects of analysis, the book discusses the applications of mathematical modelling in areas such as health science, engineering, computer science, social science, and economics. It also describes a wide variety of analytical, computational, and numerical methods. The conference aimed to foster cooperation between students and researchers in the areas of computational mathematics and engineering sciences, and provide a platform for them to share significant research ideas. This book is a valuable resource for graduate students, researchers and educators interested in the mathematical tools and techniques required for solving various problems arising in science and engineering, and understanding new methods and uses of mathematical analysis.
This book discusses recent developments in and contemporary research on summability theory, including general summability methods, direct theorems on summability, absolute and strong summability, special methods of summability, functional analytic methods in summability, and related topics and applications. All contributing authors are eminent scientists, researchers and scholars in their respective fields, and hail from around the world. The book can be used as a textbook for graduate and senior undergraduate students, and as a valuable reference guide for researchers and practitioners in the fields of summability theory and functional analysis. Summability theory is generally used in analysis and applied mathematics. It plays an important part in the engineering sciences, and various aspects of the theory have long since been studied by researchers all over the world. |
You may like...
|