Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
Microcluster Physics provides a lucid account of the fundamental physics of all types of microclusters, outlining the dynamics and static properties of this new phase of matter intermediate between a solid and a molecule. Since originally published in 1991, the field of microclusters has experienced surprising developments, which are reviewed in this new edition: The determination of atomic structure, spontaneous alloying, super-shell, fission, fragmentation, evaporation, magnetism, fullerenes, nanotubes, atomic structure of large silicon clusters, superfluidity of a He cluster, water clusters in liquid, electron correlation and optimizsation of the geometry, and scattering.
Aimed at graduate physics and chemistry students, this is the first comprehensive monograph covering the concept of the geometric phase in quantum physics from its mathematical foundations to its physical applications and experimental manifestations. It contains all the premises of the adiabatic Berry phase as well as the exact Anandan-Aharonov phase. It discusses quantum systems in a classical time-independent environment (time dependent Hamiltonians) and quantum systems in a changing environment (gauge theory of molecular physics). The mathematical methods used are a combination of differential geometry and the theory of linear operators in Hilbert Space. As a result, the monograph demonstrates how non-trivial gauge theories naturally arise and how the consequences can be experimentally observed. Readers benefit by gaining a deep understanding of the long-ignored gauge theoretic effects of quantum mechanics and how to measure them.
Microcluster Physics provides a lucid account of the fundamental physics of all types of microclusters, outlining the dynamics and static properties of this new phase of matter intermediate between a solid and a molecule. Since originally published in 1991, the field of microclusters has experienced surprising developments, which are reviewed in this new edition: The determination of atomic structure, spontaneous alloying, super-shell, fission, fragmentation, evaporation, magnetism, fullerenes, nanotubes, atomic structure of large silicon clusters, superfluidity of a He cluster, water clusters in liquid, electron correlation and optimizsation of the geometry, and scattering.
From the reviews: ..".useful for experts in mathematical physics...this is a very interesting book, which deserves to be found in any physical library." (OPTICS & PHOTONICS NEWS, July/August 2005).
|
You may like...
|