0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (1)
  • R2,500 - R5,000 (1)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Statistical Inference - The Minimum Distance Approach (Paperback): Ayanendranath Basu, Hiroyuki Shioya, Chanseok Park Statistical Inference - The Minimum Distance Approach (Paperback)
Ayanendranath Basu, Hiroyuki Shioya, Chanseok Park
R1,385 Discovery Miles 13 850 Ships in 12 - 17 working days

In many ways, estimation by an appropriate minimum distance method is one of the most natural ideas in statistics. However, there are many different ways of constructing an appropriate distance between the data and the model: the scope of study referred to by "Minimum Distance Estimation" is literally huge. Filling a statistical resource gap, Statistical Inference: The Minimum Distance Approach comprehensively overviews developments in density-based minimum distance inference for independently and identically distributed data. Extensions to other more complex models are also discussed. Comprehensively covering the basics and applications of minimum distance inference, this book introduces and discusses: The estimation and hypothesis testing problems for both discrete and continuous models The robustness properties and the structural geometry of the minimum distance methods The inlier problem and its possible solutions, and the weighted likelihood estimation problem The extension of the minimum distance methodology in interdisciplinary areas, such as neural networks and fuzzy sets, as well as specialized models and problems, including semi-parametric problems, mixture models, grouped data problems, and survival analysis. Statistical Inference: The Minimum Distance Approach gives a thorough account of density-based minimum distance methods and their use in statistical inference. It covers statistical distances, density-based minimum distance methods, discrete and continuous models, asymptotic distributions, robustness, computational issues, residual adjustment functions, graphical descriptions of robustness, penalized and combined distances, weighted likelihood, and multinomial goodness-of-fit tests. This carefully crafted resource is useful to researchers and scientists within and outside the statistics arena.

Statistical Inference - The Minimum Distance Approach (Hardcover): Ayanendranath Basu, Hiroyuki Shioya, Chanseok Park Statistical Inference - The Minimum Distance Approach (Hardcover)
Ayanendranath Basu, Hiroyuki Shioya, Chanseok Park
R4,587 Discovery Miles 45 870 Ships in 12 - 17 working days

In many ways, estimation by an appropriate minimum distance method is one of the most natural ideas in statistics. However, there are many different ways of constructing an appropriate distance between the data and the model: the scope of study referred to by "Minimum Distance Estimation" is literally huge. Filling a statistical resource gap, Statistical Inference: The Minimum Distance Approach comprehensively overviews developments in density-based minimum distance inference for independently and identically distributed data. Extensions to other more complex models are also discussed.

Comprehensively covering the basics and applications of minimum distance inference, this book introduces and discusses:

  • The estimation and hypothesis testing problems for both discrete and continuous models
  • The robustness properties and the structural geometry of the minimum distance methods
  • The inlier problem and its possible solutions, and the weighted likelihood estimation problem
  • The extension of the minimum distance methodology in interdisciplinary areas, such as neural networks and fuzzy sets, as well as specialized models and problems, including semi-parametric problems, mixture models, grouped data problems, and survival analysis.

Statistical Inference: The Minimum Distance Approach gives a thorough account of density-based minimum distance methods and their use in statistical inference. It covers statistical distances, density-based minimum distance methods, discrete and continuous models, asymptotic distributions, robustness, computational issues, residual adjustment functions, graphical descriptions of robustness, penalized and combined distances, weighted likelihood, and multinomial goodness-of-fit tests. This carefully crafted resource is useful to researchers and scientists within and outside the statistics arena.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Why crocodiles smile - Cric Croc…
Anthony Buirchell Hardcover R412 Discovery Miles 4 120
Wild Animals at Home
Ernest Thompson Seton Hardcover R759 R543 Discovery Miles 5 430
Spin to Survive: Deadly Jungle - Decide…
Emily Hawkins Novelty book R433 Discovery Miles 4 330
The Caterpillar That Learned to Fly - A…
Sharon Clark Hardcover R571 R480 Discovery Miles 4 800
i-SPY Creepy Crawlies - Spy it! Score…
I Spy Paperback R87 Discovery Miles 870
The Budgeting Bear - A Children's Book…
Charlotte Dane Hardcover R465 Discovery Miles 4 650
Eva and Boo at the St. Louis Zoo
Dee Livers Hardcover R416 Discovery Miles 4 160
Ready, Set, Sloth!
Janey Merry Hardcover R553 Discovery Miles 5 530
Faansie Se Voelboek 2 - 'n Volledige…
Faansie Peacock Paperback R520 R406 Discovery Miles 4 060
The Wild Life of Animals - The Secret…
Paula Bossio Paperback R315 R252 Discovery Miles 2 520

 

Partners