0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (1)
  • R2,500 - R5,000 (1)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Statistical Inference - The Minimum Distance Approach (Paperback): Ayanendranath Basu, Hiroyuki Shioya, Chanseok Park Statistical Inference - The Minimum Distance Approach (Paperback)
Ayanendranath Basu, Hiroyuki Shioya, Chanseok Park
R1,521 Discovery Miles 15 210 Ships in 10 - 15 working days

In many ways, estimation by an appropriate minimum distance method is one of the most natural ideas in statistics. However, there are many different ways of constructing an appropriate distance between the data and the model: the scope of study referred to by "Minimum Distance Estimation" is literally huge. Filling a statistical resource gap, Statistical Inference: The Minimum Distance Approach comprehensively overviews developments in density-based minimum distance inference for independently and identically distributed data. Extensions to other more complex models are also discussed. Comprehensively covering the basics and applications of minimum distance inference, this book introduces and discusses: The estimation and hypothesis testing problems for both discrete and continuous models The robustness properties and the structural geometry of the minimum distance methods The inlier problem and its possible solutions, and the weighted likelihood estimation problem The extension of the minimum distance methodology in interdisciplinary areas, such as neural networks and fuzzy sets, as well as specialized models and problems, including semi-parametric problems, mixture models, grouped data problems, and survival analysis. Statistical Inference: The Minimum Distance Approach gives a thorough account of density-based minimum distance methods and their use in statistical inference. It covers statistical distances, density-based minimum distance methods, discrete and continuous models, asymptotic distributions, robustness, computational issues, residual adjustment functions, graphical descriptions of robustness, penalized and combined distances, weighted likelihood, and multinomial goodness-of-fit tests. This carefully crafted resource is useful to researchers and scientists within and outside the statistics arena.

Statistical Inference - The Minimum Distance Approach (Hardcover): Ayanendranath Basu, Hiroyuki Shioya, Chanseok Park Statistical Inference - The Minimum Distance Approach (Hardcover)
Ayanendranath Basu, Hiroyuki Shioya, Chanseok Park
R4,948 Discovery Miles 49 480 Ships in 10 - 15 working days

In many ways, estimation by an appropriate minimum distance method is one of the most natural ideas in statistics. However, there are many different ways of constructing an appropriate distance between the data and the model: the scope of study referred to by "Minimum Distance Estimation" is literally huge. Filling a statistical resource gap, Statistical Inference: The Minimum Distance Approach comprehensively overviews developments in density-based minimum distance inference for independently and identically distributed data. Extensions to other more complex models are also discussed.

Comprehensively covering the basics and applications of minimum distance inference, this book introduces and discusses:

  • The estimation and hypothesis testing problems for both discrete and continuous models
  • The robustness properties and the structural geometry of the minimum distance methods
  • The inlier problem and its possible solutions, and the weighted likelihood estimation problem
  • The extension of the minimum distance methodology in interdisciplinary areas, such as neural networks and fuzzy sets, as well as specialized models and problems, including semi-parametric problems, mixture models, grouped data problems, and survival analysis.

Statistical Inference: The Minimum Distance Approach gives a thorough account of density-based minimum distance methods and their use in statistical inference. It covers statistical distances, density-based minimum distance methods, discrete and continuous models, asymptotic distributions, robustness, computational issues, residual adjustment functions, graphical descriptions of robustness, penalized and combined distances, weighted likelihood, and multinomial goodness-of-fit tests. This carefully crafted resource is useful to researchers and scientists within and outside the statistics arena.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
VELCROŽ Stick On Squares (25mm)(24 x…
R119 Discovery Miles 1 190
Kindle 6" Cover for 11th Gen 2022…
R307 Discovery Miles 3 070
ZA Ethnic Bohemian Drop Earrings
R439 R299 Discovery Miles 2 990
Dreambaby 9cm Extension - Liberty…
R365 Discovery Miles 3 650
Casio LW-200-7AV Watch with 10-Year…
R999 R899 Discovery Miles 8 990
Hermes Eau De Pamplemousse Rose…
R3,012 Discovery Miles 30 120
Loot
Nadine Gordimer Paperback  (2)
R367 R340 Discovery Miles 3 400
Igia Vibro Shape Belt
R700 R500 Discovery Miles 5 000
Parrot Visualizer - Deluxe Presenter
R7,245 R6,745 Discovery Miles 67 450
Staedtler 14cm Multi-Use Scissors (Right…
R29 R15 Discovery Miles 150

 

Partners