Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 13 of 13 matches in All Departments
This edited volume is targeted at presenting the latest state-of-the-art methodologies in "Hybrid Evolutionary Algorithms." The chapters deal with the theoretical and methodological aspects, as well as various applications to many real world problems from science, technology, business or commerce. Overall, the book has 14 chapters including an introductory chapter giving the fundamental definitions and some important research challenges. The contributions were selected on the basis of fundamental ideas/concepts rather than the thoroughness of techniques deployed.
This book contains a collection of the papers accepted in the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems (IES 2014), which was held in Singapore from 10-12th November 2014. The papers contained in this book demonstrate notable intelligent systems with good analytical and/or empirical results.
This book contains a collection of the papers accepted in the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems (IES 2014), which was held in Singapore from 10-12th November 2014. The papers contained in this book demonstrate notable intelligent systems with good analytical and/or empirical results.
Many approaches have already been proposed for classification and modeling in the literature. These approaches are usually based on mathematical mod els. Computer systems can easily handle mathematical models even when they are complicated and nonlinear (e.g., neural networks). On the other hand, it is not always easy for human users to intuitively understand mathe matical models even when they are simple and linear. This is because human information processing is based mainly on linguistic knowledge while com puter systems are designed to handle symbolic and numerical information. A large part of our daily communication is based on words. We learn from various media such as books, newspapers, magazines, TV, and the Inter net through words. We also communicate with others through words. While words play a central role in human information processing, linguistic models are not often used in the fields of classification and modeling. If there is no goal other than the maximization of accuracy in classification and model ing, mathematical models may always be preferred to linguistic models. On the other hand, linguistic models may be chosen if emphasis is placed on interpretability."
Solving pattern recognition problems involves an enormous amount of computational effort. By applying genetic algorithms - a computational method based on the way chromosomes in DNA recombine - these problems are more efficiently and more accurately solved. Genetic Algorithms for Pattern Recognition covers a broad range of applications in science and technology, describing the integration of genetic algorithms in pattern recognition and machine learning problems to build intelligent recognition systems. The articles, written by leading experts from around the world, accomplish several objectives: they provide insight into the theory of genetic algorithms; they develop pattern recognition theory in light of genetic algorithms; and they illustrate applications in artificial neural networks and fuzzy logic. The cross-sectional view of current research presented in Genetic Algorithms for Pattern Recognition makes it a unique text, ideal for graduate students and researchers.
Solving pattern recognition problems involves an enormous amount of computational effort. By applying genetic algorithms - a computational method based on the way chromosomes in DNA recombine - these problems are more efficiently and more accurately solved. Genetic Algorithms for Pattern Recognition covers a broad range of applications in science and technology, describing the integration of genetic algorithms in pattern recognition and machine learning problems to build intelligent recognition systems. The articles, written by leading experts from around the world, accomplish several objectives: they provide insight into the theory of genetic algorithms; they develop pattern recognition theory in light of genetic algorithms; and they illustrate applications in artificial neural networks and fuzzy logic. The cross-sectional view of current research presented in Genetic Algorithms for Pattern Recognition makes it a unique text, ideal for graduate students and researchers.
This book contains a collection of the papers accepted in the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems (IES 2014), which was held in Singapore from 10-12th November 2014. The papers contained in this book demonstrate notable intelligent systems with good analytical and/or empirical results.
This book contains a collection of the papers accepted in the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems (IES 2014), which was held in Singapore from 10-12th November 2014. The papers contained in this book demonstrate notable intelligent systems with good analytical and/or empirical results.
This volume constitutes the proceedings of the 10th International Conference on Simulated Evolution and Learning, SEAL 2012, held in Dunedin, New Zealand, in December 2014. The 42 full papers and 29 short papers presented were carefully reviewed and selected from 109 submissions. The papers are organized in topical sections on evolutionary optimization; evolutionary multi-objective optimization; evolutionary machine learning; theoretical developments; evolutionary feature reduction; evolutionary scheduling and combinatorial optimization; real world applications and evolutionary image analysis.
This volume constitutes the proceedings of the 9th International Conference on Simulated Evolution and Learning, SEAL 2012, held in Hanoi, Vietnam, in December 2012. The 50 full papers presented were carefully reviewed and selected from 91 submissions. The papers are organized in topical sections on evolutionary algorithms, theoretical developments, swarm intelligence, data mining, learning methodologies, and real-world applications.
This edited volume is targeted at presenting the latest state-of-the-art methodologies in "Hybrid Evolutionary Algorithms." The chapters deal with the theoretical and methodological aspects, as well as various applications to many real world problems from science, technology, business or commerce. Overall, the book has 14 chapters including an introductory chapter giving the fundamental definitions and some important research challenges. The contributions were selected on the basis of fundamental ideas/concepts rather than the thoroughness of techniques deployed.
Many approaches have already been proposed for classification and modeling in the literature. These approaches are usually based on mathematical mod els. Computer systems can easily handle mathematical models even when they are complicated and nonlinear (e.g., neural networks). On the other hand, it is not always easy for human users to intuitively understand mathe matical models even when they are simple and linear. This is because human information processing is based mainly on linguistic knowledge while com puter systems are designed to handle symbolic and numerical information. A large part of our daily communication is based on words. We learn from various media such as books, newspapers, magazines, TV, and the Inter net through words. We also communicate with others through words. While words play a central role in human information processing, linguistic models are not often used in the fields of classification and modeling. If there is no goal other than the maximization of accuracy in classification and model ing, mathematical models may always be preferred to linguistic models. On the other hand, linguistic models may be chosen if emphasis is placed on interpretability."
This book constitutes the refereed proceedings of the 11th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2021 held in Shenzhen, China, in March 2021.The 47 full papers and 14 short papers were carefully reviewed and selected from 120 submissions. The papers are divided into the following topical sections: theory; algorithms; dynamic multi-objective optimization; constrained multi-objective optimization; multi-modal optimization; many-objective optimization; performance evaluations and empirical studies; EMO and machine learning; surrogate modeling and expensive optimization; MCDM and interactive EMO; and applications.
|
You may like...
|