Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 25 of 123 matches in All Departments
This book covers different topics of nonlinear mechanics in complex structures, such as the appearance of new nonlinear phenomena and the behavior of finite-dimensional and distributed nonlinear systems, including numerous systems directly connected with important technological problems.
This book commemorates the 75th birthday of Prof. George Jaiani - Georgia's leading expert on shell theory. He is also well known outside Georgia for his individual approach to shell theory research and as an organizer of meetings, conferences and schools in the field. The collection of papers presented includes articles by scientists from various countries discussing the state of the art and new trends in the theory of shells, plates, and beams. Chapter 20 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
This book gathers papers presented at the international workshop PMSDAM'19. The respective contributions offer valuable insights for researchers working on numerical solutions to advanced materials problems. The problems concerning the remineralization of teeth are considered. Of particular interest are articles exploring topics at the interface of different disciplines.
This book provides an update on recent advances in various areas of modern engineering design, such as mechanical, materials, computer, and process engineering, which provide the foundation for the development of improved structures, materials, and processes. The modern design cycle is characterized by the interaction of different disciplines and a strong shift toward computer-based approaches involving only a small number of experiments for verification purposes. A major driver for this development is the increased demand for cost reduction, which is also connected to environmental demands. In the transportation industry (e.g. automotive or aerospace), where there is a demand for greater fuel efficiency, one solution is lighter structures and/or improved processes for energy conversion. Another emerging area is the interaction of classical engineering with the health and medical sector.
This book offers a snapshot of recent developments in improving the properties and performance of engineering materials and structures. It discusses modeling properties related to classical mechanical, thermal, electrical and optical fields as well as those related to surface-specific quantities (e.g. roughness, wear and modifications due to surface coatings). The material types presented range from classical metals and synthetic materials to composites. Competitiveness due to cost efficiency (e.g. lighter structures and the corresponding fuel savings for transportation systems) and sustainability (e.g. recyclability or reusability) are the driving factors for engineering developments. The outcomes of these efforts are difficult to be accurately monitored due to the ongoing evaluation cycles.
This book presents studies on the plasticity, failure, and damage behavior of materials and structures under monotonic and cyclic loads. Featuring contributions by leading authors from around the globe, it focuses on the description of new effects observed in experiments, such as damage under cyclic loading. It also proposes various simulation models based on different approaches and compares them with tests, taking scaling aspects into account.
This book presents the latest advances in mechanical and materials engineering applied to the machining, joining and modification of modern engineering materials. The contributions cover the classical fields of casting, forming and injection moulding as representative manufacturing methods, whereas additive manufacturing methods (rapid prototyping and laser sintering) are treated as more innovative and recent technologies that are paving the way for the manufacturing of shapes and features that traditional methods are unable to deliver. The book also explores water jet cutting as an innovative cutting technology that avoids the heat build-up typical of classical mechanical cutting. It introduces readers to laser cutting as an alternative technology for the separation of materials, and to classical bonding and friction stir welding approaches in the context of joining technologies. In many cases, forming and machining technologies require additional post-treatment to achieve the required level of surface quality or to furnish a protective layer. Accordingly, sections on laser treatment, shot peening and the production of protective layers round out the book's coverage.
This book presents selected papers presented at the 8th International Conference "Design, Modeling and Experiments of Advanced Structures and Systems" (DeMEASS VIII, held in Moscow, Russia in May 2017) and reflects the modern state of sciences in this field. The contributions contain topics like Piezoelectric, Ferroelectric, Ferroelastic and Magnetostrictive Materials, Shape Memory Alloys and Active Polymers, Functionally Graded Materials, Multi-Functional Smart Materials and Structures, Coupled Multi-Field Problems, Design and Modeling of Sensors and Actuators, Adaptive Structures.
This book presents a collection of contributions on the advanced mechanics of materials and mechanics of structures approaches, written in honor of Professor Kienzler. It covers various topics related to constitutive models for advanced materials, recent developments in mechanics of configuration forces, as well as new approaches to the efficient modeling and analysis of engineering structures.
The book celebrates the 65th birthday of Prof. Alexander K. Belyaev-a well-known expert in the field of Dynamics of Mechanical Systems. In addition to reflecting Prof. Belyaev's contributions, the papers gathered here address a range of current problems in Dynamics and Continuum Mechanics. All contributions were prepared by his friends and colleagues, and chiefly focus on theory and applications.
The book presents mathematical and mechanical aspects of the theory of plates and shells, applications in civil, aero-space and mechanical engineering, as well in other areas. The focus relates to the following problems:* comprehensive review of the most popular theories of plates and shells,* relations between three-dimensional theories and two-dimensional ones,* presentation of recently developed new refined plates and shells theories (for example, the micropolar theory or gradient-type theories),* modeling of coupled effects in shells and plates related to electromagnetic and temperature fields, phase transitions, diffusion, etc.,* applications in modeling of non-classical objects like, for example, nanostructures,* presentation of actual numerical tools based on the finite element approach.
This book discusses several mechanical and material problems that are typical for gas turbine components. It discusses accelerated tests and other methods for increasing the reliability of gas turbine engines. Special attention is given to non-traditional methods for calculating the strength characteristics and longevity of the main components. This first volume focuses on the selection of materials, deformation and destruction mechanisms in connection with stationary and non-stationary loading, and types of material damage such as the thermal fatigue. Particular attention is paid to the issues of the properties of single crystal alloys, the relationship between structure and properties, the influence of technological factors and long-term operation. The characteristics of creep resistance, crack resistance, and resistance to cyclic deformation of different alloys are given.
This book commemorates the 80th birthday of Prof. W. Pietraszkiewicz, a prominent specialist in the field of general shell theory. Reflecting Prof. Pietraszkiewicz's focus, the respective papers address a range of current problems in the theory of shells. In addition, they present other structural mechanics problems involving dimension-reduced models. Lastly, several applications are discussed, including material models for such dimension-reduced structures.
This collection of recent activities provides researchers and scientists with the latest trends in characterization and developments of composed materials and structures. Here, the expression 'composed materials' indicates a wider range than the expression 'composite material' which is many times limited to classical fibre reinforced plastics. The idea of composed structures and materials is to join different components in order to obtain in total better properties than one of the single constituents can provide. In this collection, well known experts present their research on composed materials such as textile composites, sandwich plates, hollow sphere structures, reinforced concrete as well as classical fibre reinforced materials.
The idea of this monograph is to present the latest results related to design and analysis of materials and engineering structures. The contributions cover the field of mechanical and civil engineering, ranging from automotive to dam design, transmission towers and up to machine design and exmaples taken from oil industry. Well known experts present their research on damage and fracture of material and structures, materials modelling and evaluation up to image processing and visualization for advanced analyses and evaluation
The idea of this monograph is to present the latest results related to design and computation of engineering materials and structures. The contributions cover the classical fields of mechanical, civil and materials engineering up to biomechanics and advanced materials processing and optimization. The materials and structures covered can be categorized into modern steels and titanium alloys, composite materials, biological and natural materials, material hybrids and modern joining technologies. Analytical modelling, numerical simulation, the application of state-of-the-art design tools and sophisticated experimental techniques are applied to characterize the performance of materials and to design and optimize structures in different fields of engineering applications.
This volume highlights the latest developments and trends in advanced materials and their properties, the modeling and simulation of non-classical materials and structures, and new technologies for joining materials. It presents the developments of advanced materials and respective tools to characterize and predict the material properties and behavior.
This monograph presents the latest developments and applications of computational tools related to the biosciences and medical engineering. Computational tools such as the finite element methods, computer-aided design and optimization as well as visualization techniques such as computed axial tomography open completely new research fields with a closer joining of the engineering and bio/medical area. Nevertheless, there are still hurdles since both directions are based on quite different ways of education. Often even the "language" is sometimes different from discipline to discipline. This monograph reports the results of different multi-disciplinary research projects, for example, from the areas of scaffolds and synthetic bones, implants and medical devices and medical materials. It is also shown that the application of computational methods often necessitates mathematical and experimental methods.
This book summarizes the actual state of the art and future trends of surface effects in solid mechanics. Surface effects are more and more important in the precise description of the behavior of advanced materials. One of the reasons for this is the well-known from the experiments fact that the mechanical properties are significantly influenced if the structural size is very small like, for example, nanostructures. In this book, various authors study the influence of surface effects in the elasticity, plasticity, viscoelasticity. In addition, the authors discuss all important different approaches to model such effects. These are based on various theoretical frameworks such as continuum theories or molecular modeling. The book also presents applications of the modeling approaches.
This monograph presents the latest results related to bio-mechanical systems and materials. The bio-mechanical systems with which his book is concerned are prostheses, implants, medical operation robots and muscular re-training systems. To characterize and design such systems, a multi-disciplinary approach is required which involves the classical disciplines of mechanical/materials engineering and biology and medicine. The challenge in such an approach is that views, concepts or even language are sometimes different from discipline to discipline and the interaction and communication of the scientists must be first developed and adjusted. Within the context of materials' science, the book covers the interaction of materials with mechanical systems, their description as a mechanical system or their mechanical properties.
The book covers the state-of-the-art treatment in modelling and experimental investigation of the mechanical behaviour of cellular and porous materials. Starting from the continuum mechanical modelling, to the numerical simulation, several important questions related to applications such as the fracture and impact behaviour are covered.
This book provides an overview of the current of the state of the art in the multiscale mechanics of solids and structures. It comprehensively discusses new materials, including theoretical and experimental investigations their durability and strength, as well as fractures and damage
This book shows impressively how complex mathematical modeling of materials can be applied to technological problems. Top-class researchers present the theoretical approaches in modern mechanics and apply them to real-world problems in solid mechanics, creep, plasticity, fracture, impact, and friction. They show how they can be applied to technological challenges in various fields like aerospace technology, biological sciences and modern engineering materials.
This book presents studies on the inelastic behavior of materials and structures under monotonic and cyclic loads. It focuses on the description of new effects like purely thermal cycles or cases of non-trivial damages. The various models are based on different approaches and methods and scaling aspects are taken into account. In addition to purely phenomenological models, the book also presents mechanisms-based approaches. It includes contributions written by leading authors from a host of different countries. |
You may like...
Wits University At 100 - From Excavation…
Wits Communications
Paperback
Quiet Time With The President - A…
Peter Friedland, Jill Margo
Paperback
|