Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
One of the most challenging issues for the intelligent decision systems is to effectively manage the large-scale complex distributed environments such as computational clouds, grids, ad hoc and P2P networks, under the different types of users, their relations, and real-world uncertainties. In this context the IT resources and services usually belong to different owners (institutions, enterprises, or individuals) and are managed by different administrators. These administrators conform to different sets of rules and configuration directives, and can impose different usage policies on the system users. Additionally, uncertainties are presented in various types of information that are incomplete, imprecise, fragmentary or overloading, which hinders the full and precise determination of the evaluation criteria, their subsequent and selection, the assignment scores, and eventually the final integrated decision result. This book presents new ideas, analysis, implementations and evaluation of the next generation intelligent techniques for solving complex decision problems in large-scale distributed systems. In 15 chapters several important formulations of the decision problems in heterogeneous environments are identified and a review of the recent approaches, from game theoretical models and computational intelligent techniques, such as genetic, memetic and evolutionary algorithms, to intelligent multi-agent systems and networking are presented. We believe that this volume will serve as a reference for the students, researchers and industry practitioners working in or are interested in joining interdisciplinary works in the areas of intelligent decision systems using emergent distributed computing paradigms. It will also allow newcomers to grasp key concerns and potential solutions on the selected topics."
One of the most challenging issues for the intelligent decision systems is to effectively manage the large-scale complex distributed environments such as computational clouds, grids, ad hoc and P2P networks, under the different types of users, their relations, and real-world uncertainties. In this context the IT resources and services usually belong to different owners (institutions, enterprises, or individuals) and are managed by different administrators. These administrators conform to different sets of rules and configuration directives, and can impose different usage policies on the system users. Additionally, uncertainties are presented in various types of information that are incomplete, imprecise, fragmentary or overloading, which hinders the full and precise determination of the evaluation criteria, their subsequent and selection, the assignment scores, and eventually the final integrated decision result. This book presents new ideas, analysis, implementations and evaluation of the next generation intelligent techniques for solving complex decision problems in large-scale distributed systems. In 15 chapters several important formulations of the decision problems in heterogeneous environments are identified and a review of the recent approaches, from game theoretical models and computational intelligent techniques, such as genetic, memetic and evolutionary algorithms, to intelligent multi-agent systems and networking are presented. We believe that this volume will serve as a reference for the students, researchers and industry practitioners working in or are interested in joining interdisciplinary works in the areas of intelligent decision systems using emergent distributed computing paradigms. It will also allow newcomers to grasp key concerns and potential solutions on the selected topics.
This open access book was prepared as a Final Publication of the COST Action IC1406 "High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)" project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications.
|
You may like...
|