0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (4)
  • -
Status
Brand

Showing 1 - 4 of 4 matches in All Departments

Evolutionary Data Clustering: Algorithms and Applications (Hardcover, 1st ed. 2021): Ibrahim Aljarah, Hossam Faris, Seyed Ali... Evolutionary Data Clustering: Algorithms and Applications (Hardcover, 1st ed. 2021)
Ibrahim Aljarah, Hossam Faris, Seyed Ali Mirjalili
R4,710 Discovery Miles 47 100 Ships in 18 - 22 working days

This book provides an in-depth analysis of the current evolutionary clustering techniques. It discusses the most highly regarded methods for data clustering. The book provides literature reviews about single objective and multi-objective evolutionary clustering algorithms. In addition, the book provides a comprehensive review of the fitness functions and evaluation measures that are used in most of evolutionary clustering algorithms. Furthermore, it provides a conceptual analysis including definition, validation and quality measures, applications, and implementations for data clustering using classical and modern nature-inspired techniques. It features a range of proven and recent nature-inspired algorithms used to data clustering, including particle swarm optimization, ant colony optimization, grey wolf optimizer, salp swarm algorithm, multi-verse optimizer, Harris hawks optimization, beta-hill climbing optimization. The book also covers applications of evolutionary data clustering in diverse fields such as image segmentation, medical applications, and pavement infrastructure asset management.

Evolutionary Machine Learning Techniques - Algorithms and Applications (Hardcover, 1st ed. 2020): Seyed Ali Mirjalili, Hossam... Evolutionary Machine Learning Techniques - Algorithms and Applications (Hardcover, 1st ed. 2020)
Seyed Ali Mirjalili, Hossam Faris, Ibrahim Aljarah
R4,719 Discovery Miles 47 190 Ships in 18 - 22 working days

This book provides an in-depth analysis of the current evolutionary machine learning techniques. Discussing the most highly regarded methods for classification, clustering, regression, and prediction, it includes techniques such as support vector machines, extreme learning machines, evolutionary feature selection, artificial neural networks including feed-forward neural networks, multi-layer perceptron, probabilistic neural networks, self-optimizing neural networks, radial basis function networks, recurrent neural networks, spiking neural networks, neuro-fuzzy networks, modular neural networks, physical neural networks, and deep neural networks. The book provides essential definitions, literature reviews, and the training algorithms for machine learning using classical and modern nature-inspired techniques. It also investigates the pros and cons of classical training algorithms. It features a range of proven and recent nature-inspired algorithms used to train different types of artificial neural networks, including genetic algorithm, ant colony optimization, particle swarm optimization, grey wolf optimizer, whale optimization algorithm, ant lion optimizer, moth flame algorithm, dragonfly algorithm, salp swarm algorithm, multi-verse optimizer, and sine cosine algorithm. The book also covers applications of the improved artificial neural networks to solve classification, clustering, prediction and regression problems in diverse fields.

Evolutionary Data Clustering: Algorithms and Applications (Paperback, 1st ed. 2021): Ibrahim Aljarah, Hossam Faris, Seyed Ali... Evolutionary Data Clustering: Algorithms and Applications (Paperback, 1st ed. 2021)
Ibrahim Aljarah, Hossam Faris, Seyed Ali Mirjalili
R4,681 Discovery Miles 46 810 Ships in 18 - 22 working days

This book provides an in-depth analysis of the current evolutionary clustering techniques. It discusses the most highly regarded methods for data clustering. The book provides literature reviews about single objective and multi-objective evolutionary clustering algorithms. In addition, the book provides a comprehensive review of the fitness functions and evaluation measures that are used in most of evolutionary clustering algorithms. Furthermore, it provides a conceptual analysis including definition, validation and quality measures, applications, and implementations for data clustering using classical and modern nature-inspired techniques. It features a range of proven and recent nature-inspired algorithms used to data clustering, including particle swarm optimization, ant colony optimization, grey wolf optimizer, salp swarm algorithm, multi-verse optimizer, Harris hawks optimization, beta-hill climbing optimization. The book also covers applications of evolutionary data clustering in diverse fields such as image segmentation, medical applications, and pavement infrastructure asset management.

Evolutionary Machine Learning Techniques - Algorithms and Applications (Paperback, 1st ed. 2020): Seyed Ali Mirjalili, Hossam... Evolutionary Machine Learning Techniques - Algorithms and Applications (Paperback, 1st ed. 2020)
Seyed Ali Mirjalili, Hossam Faris, Ibrahim Aljarah
R4,691 Discovery Miles 46 910 Ships in 18 - 22 working days

This book provides an in-depth analysis of the current evolutionary machine learning techniques. Discussing the most highly regarded methods for classification, clustering, regression, and prediction, it includes techniques such as support vector machines, extreme learning machines, evolutionary feature selection, artificial neural networks including feed-forward neural networks, multi-layer perceptron, probabilistic neural networks, self-optimizing neural networks, radial basis function networks, recurrent neural networks, spiking neural networks, neuro-fuzzy networks, modular neural networks, physical neural networks, and deep neural networks. The book provides essential definitions, literature reviews, and the training algorithms for machine learning using classical and modern nature-inspired techniques. It also investigates the pros and cons of classical training algorithms. It features a range of proven and recent nature-inspired algorithms used to train different types of artificial neural networks, including genetic algorithm, ant colony optimization, particle swarm optimization, grey wolf optimizer, whale optimization algorithm, ant lion optimizer, moth flame algorithm, dragonfly algorithm, salp swarm algorithm, multi-verse optimizer, and sine cosine algorithm. The book also covers applications of the improved artificial neural networks to solve classification, clustering, prediction and regression problems in diverse fields.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Ticket To Paradise
George Clooney, Julia Roberts, … DVD  (1)
R261 R245 Discovery Miles 2 450
Kamikaze
Eminem CD R372 Discovery Miles 3 720
Malignant
Annabelle Wallis DVD  (2)
R511 R227 Discovery Miles 2 270
Let's Rock
The Black Keys CD R229 Discovery Miles 2 290
By Way Of Deception
Amir Tsarfati, Steve Yohn Paperback  (1)
R250 R230 Discovery Miles 2 300
Faber-Castell Grip 2011 Fountain Pen…
R938 Discovery Miles 9 380
Loot
Nadine Gordimer Paperback  (2)
R367 R340 Discovery Miles 3 400
ZA Flower Studed Gold Earrings
R439 R299 Discovery Miles 2 990
Baby Toothpaste (Strawberry 45g)
R51 Discovery Miles 510
Azzaro Wanted By Night Eau De Parfum…
 (1)
R2,462 R1,958 Discovery Miles 19 580

 

Partners