Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 19 of 19 matches in All Departments
This open access book introduces the National Health Insurance (NHI) system of Taiwan with a particular emphasis on its application of digital technology to improve healthcare access and quality. The authors explicate how Taiwan integrates its strong Information and Communications Technology (ICT) industry with 5G to construct an information system that facilitates medical information exchange, collects data for planning and research, refines medical claims review procedures and even assists in fighting COVID-19. Taiwan's NHI, launched in 1995, is a single-payer system funded primarily through payroll-based premiums. It covers all citizens and foreign residents with the same comprehensive benefits without the long waiting times seen in other single-payer systems. Though premium rate adjustment and various reforms were carried out in 2010, the NHI finds itself at a crossroads over its financial stability. With the advancement of technologies and an aging population, it faces challenges of expanding coverage to newly developed treatments and diagnosis methods and applying the latest innovations to deliver telemedicine and more patient-centered services. The NHI, like the national health systems of other countries, also needs to address the privacy concerns of the personal health data it collects and the issues regarding opening this data for research or commercial use. In this book, the 12 chapters cover the history, characteristics, current status, innovations and future reform plans of the NHI in the digital era. Topics explored include: Income Strategy Payment Structure Pursuing Health Equity Infrastructure of the Medical Information System Innovative Applications of the Medical Information Applications of Big Data and Artificial Intelligence Digital Health Care in Taiwan is essential reading for academic researchers and students in healthcare administration, health policy, health systems research, and health services delivery, as well as policymakers and public officials in relevant government departments. It also would appeal to academics, practitioners, and other professionals in public health, health sciences, social welfare, and health and biotechnology law.
This book reports on the latest developments in computational fluid dynamics and turbulence modeling, with a special emphasis on hybrid RANS-LES methods and their industrial applications. It gathers the proceedings of the Sixth Symposium on Hybrid RANS-LES Methods, held on September 26-28 in Strasbourg, France. The different chapters covers a wealth of topics such as flow control, aero-acoustics, aero-elasticity and CFD-based multidisciplinary optimization. Further topics include wall-modelled Large Eddy Simulation (WMLES), embedded LES, Lattice-Bolzman methods, turbulence-resolving applications and comparisons between LES, hybrid RANS-LES and URANS methods. The book addresses academic researchers, graduate students, industrial engineers, as well as industrial R&D managers and consultants dealing with turbulence modelling, simulation and measurement, and with multidisciplinary applications of computational fluid dynamics.
This book gathers the proceedings of the Fifth Symposium on Hybrid RANS-LES Methods, which was held on March 19-21 in College Station, Texas, USA. The different chapters, written by leading experts, reports on the most recent developments in flow physics modelling, and gives a special emphasis to industrially relevant applications of hybrid RANS-LES methods and other turbulence-resolving modelling approaches. The book addresses academic researchers, graduate students, industrial engineers, as well as industrial R&D managers and consultants dealing with turbulence modelling, simulation and measurement, and with multidisciplinary applications of computational fluid dynamics (CFD), such as flow control, aero-acoustics, aero-elasticity and CFD-based multidisciplinary optimization. It discusses in particular advanced hybrid RANS-LES methods. Further topics include wall-modelled Large Eddy Simulation (WMLES) methods, embedded LES, and a comparison of the LES methods with both hybrid RANS-LES and URANS methods. Overall, the book provides readers with a snapshot on the state-of-the-art in CFD and turbulence modelling, with a special focus to hybrid RANS-LES methods and their industrial applications.
The present book contains contributions presented at the Fourth Symposium on Hybrid RANS-LES Methods, held in Beijing, China, 28-30 September 2011, being a continuation of symposia taking place in Stockholm (Sweden, 2005), in Corfu (Greece, 2007), and Gdansk (Poland, 2009). The contributions to the last two symposia were published as NNFM, Vol. 97 and Vol. 111. At the Beijing symposium, along with seven invited keynotes, another 46 papers (plus 5 posters) were presented addressing topics on Novel turbulence-resolving simulation and modelling, Improved hybrid RANS-LES methods, Comparative studies of difference modelling methods, Modelling-related numerical issues and Industrial applications.. The present book reflects recent activities and new progress made in the development and applications of hybrid RANS-LES methods in general.
This book gathers the proceedings of the Seventh Symposium on Hybrid RANS-LES Methods, which was held on September 17-19 in Berlin, Germany. The different chapters, written by leading experts, reports on the most recent developments in flow physics modelling, and gives a special emphasis to industrially relevant applications of hybrid RANS-LES methods and other turbulence-resolving modelling approaches. The book addresses academic researchers, graduate students, industrial engineers, as well as industrial R&D managers and consultants dealing with turbulence modelling, simulation and measurement, and with multidisciplinary applications of computational fluid dynamics (CFD), such as flow control, aero-acoustics, aero-elasticity and CFD-based multidisciplinary optimization. It discusses in particular advanced hybrid RANS-LES methods. Further topics include wall-modelled Large Eddy Simulation (WMLES) methods, embedded LES, Lattice-Bolzman methods and turbulence-resolving applications and a comparison of the LES methods with both hybrid RANS-LES and URANS methods. Overall, the book provides readers with a snapshot on the state-of-the-art in CFD and turbulence modelling, with a special focus to hybrid RANS-LES methods and their industrial applications.
Presenting the latest research in the control of fuel cell technology, this book will contribute to the commercial viability of the technology. The authors background in automotive technology gives the work added authority as a vital element of future planning.
Turbulence modelling has long been, and will remain, one of the most important t- ics in turbulence research, challenging scientists and engineers in the academic world and in the industrial society. Over the past decade, Detached Eddy Simulation (DES) and other hybrid RANS-LES methods have received increasing attention from the turbulence-research community, as well as from industrial CFD engineers. Indeed, as an engineering modelling approach, hybrid RANS-LES methods have acquired a remarkable profile in modelling turbulent flows of industrial interest in relation to, for example, transportation, energy production and the environment. The advantage exploited with hybrid RANS-LES modelling approaches, being - tentially more computationally efficient than LES and more accurate than (unsteady) RANS, has motivated numerous research and development activities. These activities, together with industrial applications, have been further facilitated over the recent years by the rapid development of modern computing resources. As a European initiative, the EU project DESider (Detached Eddy Simulation for Industrial Aerodynamics, 2004-2007), has been one of the earliest and most systematic international R&D effort with its focus on development, improvement and applications of a variety of existing and new hybrid RANS-LES modelling approaches, as well as on related numerical issues. In association with the DESider project, two subsequent international symposia on hybrid RANS-LES methods have been arranged in Stockholm (Sweden, 2005) and in Corfu (Greece, 2007), respectively. The present book is a result of the Second Symposium on Hybrid RANS-LES Methods, held in Corfu, Greece, 17-18 June 2007.
This book gathers the proceedings of the Seventh Symposium on Hybrid RANS-LES Methods, which was held on September 17-19 in Berlin, Germany. The different chapters, written by leading experts, reports on the most recent developments in flow physics modelling, and gives a special emphasis to industrially relevant applications of hybrid RANS-LES methods and other turbulence-resolving modelling approaches. The book addresses academic researchers, graduate students, industrial engineers, as well as industrial R&D managers and consultants dealing with turbulence modelling, simulation and measurement, and with multidisciplinary applications of computational fluid dynamics (CFD), such as flow control, aero-acoustics, aero-elasticity and CFD-based multidisciplinary optimization. It discusses in particular advanced hybrid RANS-LES methods. Further topics include wall-modelled Large Eddy Simulation (WMLES) methods, embedded LES, Lattice-Bolzman methods and turbulence-resolving applications and a comparison of the LES methods with both hybrid RANS-LES and URANS methods. Overall, the book provides readers with a snapshot on the state-of-the-art in CFD and turbulence modelling, with a special focus to hybrid RANS-LES methods and their industrial applications.
This book reports on the latest developments in computational fluid dynamics and turbulence modeling, with a special emphasis on hybrid RANS-LES methods and their industrial applications. It gathers the proceedings of the Sixth Symposium on Hybrid RANS-LES Methods, held on September 26-28 in Strasbourg, France. The different chapters covers a wealth of topics such as flow control, aero-acoustics, aero-elasticity and CFD-based multidisciplinary optimization. Further topics include wall-modelled Large Eddy Simulation (WMLES), embedded LES, Lattice-Bolzman methods, turbulence-resolving applications and comparisons between LES, hybrid RANS-LES and URANS methods. The book addresses academic researchers, graduate students, industrial engineers, as well as industrial R&D managers and consultants dealing with turbulence modelling, simulation and measurement, and with multidisciplinary applications of computational fluid dynamics.
This book gathers the proceedings of the Fifth Symposium on Hybrid RANS-LES Methods, which was held on March 19-21 in College Station, Texas, USA. The different chapters, written by leading experts, reports on the most recent developments in flow physics modelling, and gives a special emphasis to industrially relevant applications of hybrid RANS-LES methods and other turbulence-resolving modelling approaches. The book addresses academic researchers, graduate students, industrial engineers, as well as industrial R&D managers and consultants dealing with turbulence modelling, simulation and measurement, and with multidisciplinary applications of computational fluid dynamics (CFD), such as flow control, aero-acoustics, aero-elasticity and CFD-based multidisciplinary optimization. It discusses in particular advanced hybrid RANS-LES methods. Further topics include wall-modelled Large Eddy Simulation (WMLES) methods, embedded LES, and a comparison of the LES methods with both hybrid RANS-LES and URANS methods. Overall, the book provides readers with a snapshot on the state-of-the-art in CFD and turbulence modelling, with a special focus to hybrid RANS-LES methods and their industrial applications.
Hybrid modelling of turbulent flows, combining RANS and LES techniques, has received increasing attention over the past decade to fill the gap between (U)RANS and LES computations in aerodynamic applications at industrially relevant Reynolds numbers. With the advantage of hybrid RANS-LES modelling approaches, being considerably more computationally efficient than full LES and more accurate than (U)RANS, particularly for unsteady aerodynamic flows, has motivated numerous research and development activities. These activities have been increasingly stimulated by the provision of modern computing facilities. The present book contains the contributions presented at the Third Symposium on Hybrid RANS-LES Methods, held in Gdansk, Poland, 10-12 June 2009. To a certain extent, this conference was a continuation of the first symposium taking place in Stockholm (Sweden, 2005) and the second in Corfu (Greece, 2007). Motivated by the extensive interest in the research community, the papers presented at the Corfu symposium were published by Springer in the book entitled “Advances in Hybrid RANS-LES Modelling” (in Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol. 97). At the Gdansk symposium, along with four invited keynotes, given respectively by S. Fu, U. Michel, M. Sillen and P. Spalart, another 28 papers were presented on the following topics: Unsteady RANS, LES, Improved DES Methods, Hybrid RANS-LES Methods, DES versus URANS and other Hybrid Methods, Modelli- related Numerical Issues and Industrial Applications. After the symposium all full papers have been further reviewed and revised for publication in the present book.
The present book contains contributions presented at the Fourth Symposium on Hybrid RANS-LES Methods, held in Beijing, China, 28-30 September 2011, being a continuation of symposia taking place in Stockholm (Sweden, 2005), in Corfu (Greece, 2007), and Gdansk (Poland, 2009). The contributions to the last two symposia were published as NNFM, Vol. 97 and Vol. 111. At the Beijing symposium, along with seven invited keynotes, another 46 papers (plus 5 posters) were presented addressing topics on Novel turbulence-resolving simulation and modelling, Improved hybrid RANS-LES methods, Comparative studies of difference modelling methods, Modelling-related numerical issues and Industrial applications.. The present book reflects recent activities and new progress made in the development and applications of hybrid RANS-LES methods in general.
Turbulence modelling has long been, and will remain, one of the most important t- ics in turbulence research, challenging scientists and engineers in the academic world and in the industrial society. Over the past decade, Detached Eddy Simulation (DES) and other hybrid RANS-LES methods have received increasing attention from the turbulence-research community, as well as from industrial CFD engineers. Indeed, as an engineering modelling approach, hybrid RANS-LES methods have acquired a remarkable profile in modelling turbulent flows of industrial interest in relation to, for example, transportation, energy production and the environment. The advantage exploited with hybrid RANS-LES modelling approaches, being - tentially more computationally efficient than LES and more accurate than (unsteady) RANS, has motivated numerous research and development activities. These activities, together with industrial applications, have been further facilitated over the recent years by the rapid development of modern computing resources. As a European initiative, the EU project DESider (Detached Eddy Simulation for Industrial Aerodynamics, 2004-2007), has been one of the earliest and most systematic international R&D effort with its focus on development, improvement and applications of a variety of existing and new hybrid RANS-LES modelling approaches, as well as on related numerical issues. In association with the DESider project, two subsequent international symposia on hybrid RANS-LES methods have been arranged in Stockholm (Sweden, 2005) and in Corfu (Greece, 2007), respectively. The present book is a result of the Second Symposium on Hybrid RANS-LES Methods, held in Corfu, Greece, 17-18 June 2007.
Presenting the latest research in the control of fuel cell technology, this book will contribute to the commercial viability of the technology. The authors background in automotive technology gives the work added authority as a vital element of future planning.
This open access book introduces the National Health Insurance (NHI) system of Taiwan with a particular emphasis on its application of digital technology to improve healthcare access and quality. The authors explicate how Taiwan integrates its strong Information and Communications Technology (ICT) industry with 5G to construct an information system that facilitates medical information exchange, collects data for planning and research, refines medical claims review procedures and even assists in fighting COVID-19. Taiwan's NHI, launched in 1995, is a single-payer system funded primarily through payroll-based premiums. It covers all citizens and foreign residents with the same comprehensive benefits without the long waiting times seen in other single-payer systems. Though premium rate adjustment and various reforms were carried out in 2010, the NHI finds itself at a crossroads over its financial stability. With the advancement of technologies and an aging population, it faces challenges of expanding coverage to newly developed treatments and diagnosis methods and applying the latest innovations to deliver telemedicine and more patient-centered services. The NHI, like the national health systems of other countries, also needs to address the privacy concerns of the personal health data it collects and the issues regarding opening this data for research or commercial use. In this book, the 12 chapters cover the history, characteristics, current status, innovations and future reform plans of the NHI in the digital era. Topics explored include: Income Strategy Payment Structure Pursuing Health Equity Infrastructure of the Medical Information System Innovative Applications of the Medical Information Applications of Big Data and Artificial Intelligence Digital Health Care in Taiwan is essential reading for academic researchers and students in healthcare administration, health policy, health systems research, and health services delivery, as well as policymakers and public officials in relevant government departments. It also would appeal to academics, practitioners, and other professionals in public health, health sciences, social welfare, and health and biotechnology law.
This engineering textbook is designed to introduce advanced control systems for vehicles, including advanced automotive concepts and the next generation of vehicles for ITS. For each automotive control problem considered, the authors emphasize the physics and underlying principles behind the control system concept and design. This is an exciting and rapidly developing field for which many articles and reports exist but no modern unifying text. An extensive list of references is provided at the end of each chapter for all the topics covered. It is currently the only textbook, including problems and examples, that that covers and integrates the topics of automotive powertrain control, vehicle control, and intelligent transportation systems. The emphasis is on fundamental concepts and methods for automotive control systems, rather than the rapidly changing specific technologies. Many of the text examples, as well as the end-of-chapter problems, require the use of MATLAB and/or SIMULINK.
This book presents multivariate time series methods for the analysis and optimal control of feedback systems. Although ships' autopilot systems are considered through the entire book, the methods set forth in this book can be applied to many other complicated, large, or noisy feedback control systems for which it is difficult to derive a model of the entire system based on theory in that subject area. The basic models used in this method are the multivariate autoregressive model with exogenous variables (ARX) model and the radial bases function net-type coefficients ARX model. The noise contribution analysis can then be performed through the estimated autoregressive (AR) model and various types of autopilot systems can be designed through the state-space representation of the models. The marine autopilot systems addressed in this book include optimal controllers for course-keeping motion, rolling reduction controllers with rudder motion, engine governor controllers, noise adaptive autopilots, route-tracking controllers by direct steering, and the reference course-setting approach. The methods presented here are exemplified with real data analysis and experiments on real ships. This book is highly recommended to readers who are interested in designing optimal or adaptive controllers not only of ships but also of any other complicated systems under noisy disturbance conditions.
This engineering textbook is designed to introduce advanced control systems for vehicles, including advanced automotive concepts and the next generation of vehicles for ITS. For each automotive control problem considered, the authors emphasise the physics and underlying principles behind the control system concept and design. This is an exciting and rapidly developing field for which many articles and reports exist but no modern unifying text. An extensive list of references is provided at the end of each chapter for all the topics covered. It is currently the only textbook, including problems and examples, that covers and integrates the topics of automotive powertrain control, vehicle control, and intelligent transportation systems. The emphasis is on fundamental concepts and methods for automotive control systems, rather than the rapidly changing specific technologies. Many of the text examples, as well as the end-of-chapter problems, require the use of MATLAB and/or SIMULINK.
|
You may like...
Shackled - One Woman's Dramatic Triumph…
Mariam Ibraheem, Eugene Bach
Paperback
|