0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (3)
  • -
Status
Brand

Showing 1 - 3 of 3 matches in All Departments

Simulation-Based Algorithms for Markov Decision Processes (Hardcover, 2nd ed. 2013): Hyeong Soo Chang, Jiaqiao Hu, Michael C.... Simulation-Based Algorithms for Markov Decision Processes (Hardcover, 2nd ed. 2013)
Hyeong Soo Chang, Jiaqiao Hu, Michael C. Fu, Steven I. Marcus
R2,807 Discovery Miles 28 070 Ships in 10 - 15 working days

Markov decision process (MDP) models are widely used for modeling sequential decision-making problems that arise in engineering, economics, computer science, and the social sciences. Many real-world problems modeled by MDPs have huge state and/or action spaces, giving an opening to the curse of dimensionality and so making practical solution of the resulting models intractable. In other cases, the system of interest is too complex to allow explicit specification of some of the MDP model parameters, but simulation samples are readily available (e.g., for random transitions and costs). For these settings, various sampling and population-based algorithms have been developed to overcome the difficulties of computing an optimal solution in terms of a policy and/or value function. Specific approaches include adaptive sampling, evolutionary policy iteration, evolutionary random policy search, and model reference adaptive search.
This substantially enlarged new edition reflects the latest developments in novel algorithms and their underpinning theories, and presents an updated account of the topics that have emerged since the publication of the first edition. Includes:
innovative material on MDPs, both in constrained settings and with uncertain transition properties;
game-theoretic method for solving MDPs;
theories for developing roll-out based algorithms; and
details of approximation stochastic annealing, a population-based on-line simulation-based algorithm.
The self-contained approach of this book will appeal not only to researchers in MDPs, stochastic modeling, and control, and simulation but will be a valuable source of tuition and reference for students of control and operations research.

Simulation-Based Algorithms for Markov Decision Processes (Paperback, 2nd ed. 2013): Hyeong Soo Chang, Jiaqiao Hu, Michael C.... Simulation-Based Algorithms for Markov Decision Processes (Paperback, 2nd ed. 2013)
Hyeong Soo Chang, Jiaqiao Hu, Michael C. Fu, Steven I. Marcus
R2,801 Discovery Miles 28 010 Ships in 10 - 15 working days

Markov decision process (MDP) models are widely used for modeling sequential decision-making problems that arise in engineering, economics, computer science, and the social sciences. Many real-world problems modeled by MDPs have huge state and/or action spaces, giving an opening to the curse of dimensionality and so making practical solution of the resulting models intractable. In other cases, the system of interest is too complex to allow explicit specification of some of the MDP model parameters, but simulation samples are readily available (e.g., for random transitions and costs). For these settings, various sampling and population-based algorithms have been developed to overcome the difficulties of computing an optimal solution in terms of a policy and/or value function. Specific approaches include adaptive sampling, evolutionary policy iteration, evolutionary random policy search, and model reference adaptive search. This substantially enlarged new edition reflects the latest developments in novel algorithms and their underpinning theories, and presents an updated account of the topics that have emerged since the publication of the first edition. Includes: innovative material on MDPs, both in constrained settings and with uncertain transition properties; game-theoretic method for solving MDPs; theories for developing roll-out based algorithms; and details of approximation stochastic annealing, a population-based on-line simulation-based algorithm. The self-contained approach of this book will appeal not only to researchers in MDPs, stochastic modeling, and control, and simulation but will be a valuable source of tuition and reference for students of control and operations research.

Simulation-based Algorithms for Markov Decision Processes (Paperback, Softcover reprint of hardcover 1st ed. 2007): Hyeong Soo... Simulation-based Algorithms for Markov Decision Processes (Paperback, Softcover reprint of hardcover 1st ed. 2007)
Hyeong Soo Chang, Michael C. Fu, Jiaqiao Hu, Steven I. Marcus
R3,699 Discovery Miles 36 990 Ships in 10 - 15 working days

Markov decision process (MDP) models are widely used for modeling sequential decision-making problems that arise in engineering, economics, computer science, and the social sciences. This book brings the state-of-the-art research together for the first time. It provides practical modeling methods for many real-world problems with high dimensionality or complexity which have not hitherto been treatable with Markov decision processes.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Loot
Nadine Gordimer Paperback  (2)
R383 R310 Discovery Miles 3 100
Casio LW-200-7AV Watch with 10-Year…
R999 R884 Discovery Miles 8 840
Bostik Double-Sided Tape (18mm x 10m…
 (1)
R31 Discovery Miles 310
Dala Craft Pom Poms - Assorted Colours…
R34 Discovery Miles 340
Wagworld Pet Blankie (Blue) - X Large…
R309 R159 Discovery Miles 1 590
Nintendo Switch OLED Edition Console…
R9,499 R8,399 Discovery Miles 83 990
Fine Living Eclipse Nesting Tables
R3,999 R1,900 Discovery Miles 19 000
Zap! Air Dry Pottery Kit
Kit R250 R119 Discovery Miles 1 190
Bostik Glue Stick - Loose (25g)
R42 R22 Discovery Miles 220
Conforming Bandage
R5 Discovery Miles 50

 

Partners