Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 9 of 9 matches in All Departments
This book is based on lectures I have given to undergraduate and graduate audiences at Oxford and elsewhere over the years. My aim has been to provide an outline of both the topological theory and the uniform theory, with an emphasis on the relation between the two. Although I hope that the prospec tive specialist may find it useful as an introduction it is the non-specialist I have had more in mind in selecting the contents. Thus I have tended to avoid the ingenious examples and counterexamples which often occupy much ofthe space in books on general topology, and I have tried to keep the number of definitions down to the essential minimum. There are no particular pre requisites but I have worked on the assumption that a potential reader will already have had some experience of working with sets and functions and will also be familiar with the basic concepts of algebra and analysis. There are a number of fine books on general topology, some of which I have listed in the Select Bibliography at the end of this volume. Of course I have benefited greatly from this previous work in writing my own account. Undoubtedly the strongest influence is that of Bourbaki's Topologie Generale 2], the definitive treatment of the subject which first appeared over a genera tion ago."
The aim of this book is to promote a fibrewise perspective, particularly in topology, which is central to modern mathematics. Already this view is standard in the theory of fibre bundles and therefore in such subjects as global analysis. It has a role to play also in general and equivariant topology. There are strong links with equivariant topology, a topic which has latterly been subject to great research activity. It is to be hoped that this book will provide a solid and invigorating foundation for the increasing research interest in fibrewise topology
Students of topology rightly complain that much of the basic material in the subject cannot easily be found in the literature, at least not in a convenient form. In this book I have tried to take a fresh look at some of this basic material and to organize it in a coherent fashion. The text is as self-contained as I could reasonably make it and should be quite accessible to anyone who has an elementary knowledge of point-set topology and group theory. This book is based on a course of 16 graduate lectures given at Oxford and elsewhere from time to time. In a course of that length one cannot discuss too many topics without being unduly superficial. However, this was never intended as a treatise on the subject but rather as a short introductory course which will, I hope, prove useful to specialists and non-specialists alike. The introduction contains a description of the contents. No algebraic or differen tial topology is involved, although I have borne in mind the needs of students of those branches of the subject. Exercises for the reader are scattered throughout the text, while suggestions for further reading are contained in the lists of references at the end of each chapter. In most cases these lists include the main sources I have drawn on, but this is not the type of book where it is practicable to give a reference for everything."
This book is based on lectures I have given to undergraduate and graduate audiences at Oxford and elsewhere over the years. My aim has been to provide an outline of both the topological theory and the uniform theory, with an emphasis on the relation between the two. Although I hope that the prospec tive specialist may find it useful as an introduction it is the non-specialist I have had more in mind in selecting the contents. Thus I have tended to avoid the ingenious examples and counterexamples which often occupy much ofthe space in books on general topology, and I have tried to keep the number of definitions down to the essential minimum. There are no particular pre requisites but I have worked on the assumption that a potential reader will already have had some experience of working with sets and functions and will also be familiar with the basic concepts of algebra and analysis. There are a number of fine books on general topology, some of which I have listed in the Select Bibliography at the end of this volume. Of course I have benefited greatly from this previous work in writing my own account. Undoubtedly the strongest influence is that of Bourbaki's Topologie Generale 2], the definitive treatment of the subject which first appeared over a genera tion ago."
This book is based on a course taught to an audience of undergraduate and graduate students at Oxford, and can be viewed as a bridge between the study of metric spaces and general topological spaces. About half the book is devoted to relatively little-known results, much of which is published here for the first time. The author sketches a theory of uniform transformation groups, leading to the theory of uniform spaces over a base and hence to the theory of uniform covering spaces. Readers interested in general topology will find much to interest them here.
This is a memorial volume to the distinguished Canadian-born mathematician Hugh Dowker, one of the most highly regarded topologists in the United Kingdom and sometime Professor at Birkbeck College, London. The volume comprises specially written articles on various topological topics by experts in many countries who worked with Dowker at one time or another. These include survey, expository and research articles on general topology, algebraic topology and related subjects such as knot theory and graph theory. The volume will be of great interest to graduate students and professional mathematicians whose speciality is topology, in all its aspects.
Professor Peter Hilton is one of the best known mathematicians of his generation. He has published almost 300 books and papers on various aspects of topology and algebra. The present volume is to celebrate the occasion of his sixtieth birthday. It begins with a bibliography of his work, followed by reviews of his contributions to topology and algebra. These are followed by eleven research papers concerned with various topics of current interest in algebra and topology. The articles are contributed by some of the many mathematicians with whom he has worked at one time or another. This book will be of interest to both topologists and algebraists, particularly those concerned with homotopy theory.
Stiefel manifolds are an interesting family of spaces much studied by algebraic topologists. These notes, which originated in a course given at Harvard University, describe the state of knowledge of the subject, as well as the outstanding problems. The emphasis throughout is on applications (within the subject) rather than on theory. However, such theory as is required is summarized and references to the literature are given, thus making the book accessible to non-specialists and particularly graduate students. Many examples are given and further problems suggested.
Topology, for many years, has been one of the most exciting and
influential fields of research in modern mathematics. Although its
origins may be traced back several hundred years, it was Poincare
who "gave topology wings" in a classic series of articles published
around the turn of the century. While the earlier history,
sometimes called the prehistory, is also considered, this volume is
mainly concerned with the more recent history of topology, from
Poincare onwards.
|
You may like...
Wind Turbines - Advances and Challenges…
Karam Maalawi
Hardcover
Experiments and Observations on…
Benjamin 1706-1790 Franklin, Peter 1694-1768 Collinson
Hardcover
R774
Discovery Miles 7 740
Waves of Sand and Snow and the Eddies…
Vaughan 1862-1948 Cornish
Hardcover
R919
Discovery Miles 9 190
|