0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Stable Isotopes to Trace Migratory Birds and to Identify Harmful Diseases - An Introductory Guide (Hardcover, 1st ed. 2016):... Stable Isotopes to Trace Migratory Birds and to Identify Harmful Diseases - An Introductory Guide (Hardcover, 1st ed. 2016)
G.J. Viljoen, A.G. Luckins, I. Naletoski
R1,600 Discovery Miles 16 000 Ships in 12 - 17 working days

This manuscript discusses the potentials of the approaches as mentioned below to monitor the AIVs in WMW. Molecular diagnostic platforms enable for accurate detection of the AIVs in the feces of infected birds. Similar technologies can be used to determine the bird species through DNA barcoding, enabling non-invasive research on the epidemiology of the disease. Wild migratory waterfowl (WMW) play significant role in the transmission of avian influenza viruses (AIVs) on large distances. Understanding bird migrations may therefore significantly contribute towards understanding of the disease epidemiology, however most conventional approaches to trace WMW migrations are based on capturing, tagging (mostly ringing or GPS devices) and their re-capturing to link the departure and arrival places. Stable isotope ratios in metabolically inert tissues (feathers, beaks, claws) reflect the ratios present at the point of intake (drinking or feeding), thus enabling for tracing bird origins at stopover places. Molecular diagnostic platforms such as the polymerase chain reaction (PCR) enable for accurate detection of the AIVs in the feces of infected birds. Similar technologies (genetic sequencing) can be used to determine the bird species through DNA barcoding. Simple and easy collection of feather and fecal samples at the stopover places may generate a full information package on which species of WMW carries the AIVs (PCR+DNA barcoding on the feces), as well as the origin of these species (SI+DNA barcoding on the feathers). Therefore, such approaches enable for research on the epidemiology and the ecology of the AIVs in WMW using a non-invasive platform, which does not require capturing of WMW. This manuscript discusses the potentials of these approaches to monitor the AIVs in WMW. p>

Stable Isotopes to Trace Migratory Birds and to Identify Harmful Diseases - An Introductory Guide (Paperback, Softcover reprint... Stable Isotopes to Trace Migratory Birds and to Identify Harmful Diseases - An Introductory Guide (Paperback, Softcover reprint of the original 1st ed. 2016)
G.J. Viljoen, A.G. Luckins, I. Naletoski
R1,476 Discovery Miles 14 760 Out of stock

This manuscript discusses the potentials of the approaches as mentioned below to monitor the AIVs in WMW. Molecular diagnostic platforms enable for accurate detection of the AIVs in the feces of infected birds. Similar technologies can be used to determine the bird species through DNA barcoding, enabling non-invasive research on the epidemiology of the disease. Wild migratory waterfowl (WMW) play significant role in the transmission of avian influenza viruses (AIVs) on large distances. Understanding bird migrations may therefore significantly contribute towards understanding of the disease epidemiology, however most conventional approaches to trace WMW migrations are based on capturing, tagging (mostly ringing or GPS devices) and their re-capturing to link the departure and arrival places. Stable isotope ratios in metabolically inert tissues (feathers, beaks, claws) reflect the ratios present at the point of intake (drinking or feeding), thus enabling for tracing bird origins at stopover places. Molecular diagnostic platforms such as the polymerase chain reaction (PCR) enable for accurate detection of the AIVs in the feces of infected birds. Similar technologies (genetic sequencing) can be used to determine the bird species through DNA barcoding. Simple and easy collection of feather and fecal samples at the stopover places may generate a full information package on which species of WMW carries the AIVs (PCR+DNA barcoding on the feces), as well as the origin of these species (SI+DNA barcoding on the feathers). Therefore, such approaches enable for research on the epidemiology and the ecology of the AIVs in WMW using a non-invasive platform, which does not require capturing of WMW. This manuscript discusses the potentials of these approaches to monitor the AIVs in WMW. p>

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Leisure Quip Mosquito Net (Double/Queen)
 (1)
R369 R245 Discovery Miles 2 450
John C. Maxwell Undated Planner
Paperback R469 R325 Discovery Miles 3 250
Coty Vanilla Musk Cologne Spray (50ml…
R852 R508 Discovery Miles 5 080
Aqualine Back Float (Yellow and Blue)
R277 Discovery Miles 2 770
Vital BabyŽ NURTURE™ Ultra-Comfort…
R141 R103 Discovery Miles 1 030
Loot
Nadine Gordimer Paperback  (2)
R398 R330 Discovery Miles 3 300
Genuine Leather Wallet With Clip Closure…
R299 R246 Discovery Miles 2 460
Bad Boy Men's Smoke Watch & Sunglass Set…
 (3)
R489 Discovery Miles 4 890
Ergo Mouse Pad Wrist Rest Support
R399 R149 Discovery Miles 1 490
Loot
Nadine Gordimer Paperback  (2)
R398 R330 Discovery Miles 3 300

 

Partners