![]() |
![]() |
Your cart is empty |
||
Showing 1 - 3 of 3 matches in All Departments
The complex flows in the atmosphere and oceans are believed to be accurately modelled by the Navier-Stokes equations of fluid mechanics together with classical thermodynamics. However, due to the enormous complexity of these equations, meteorologists and oceanographers have constructed approximate models of the dominant, large-scale flows that control the evolution of weather systems. The simplifications often result in models that are amenable to solution both analytically and numerically. This volume and its companion explain why such simplifications to Newton's second law produce accurate, useful models and, just as the meteorologist seeks patterns in the weather, mathematicians seek structure in the governing equations. They show how geometry and analysis facilitate solution strategies.
The complex flows in the atmosphere and oceans are believed to be accurately modeled by the Navier-Stokes equations of fluid mechanics together with classical thermodynamics. However, due to the enormous complexity of these equations, meteorologists and oceanographers have constructed approximate models of the dominant, large-scale flows that control the evolution of weather systems and that describe, for example, the dynamics of cyclones and ocean eddies. The simplifications often result in models that are amenable to solution both analytically and numerically. The volume examines and explains why such simplifications to Newton's second law produce accurate, useful models and, just as the meteorologist seeks patterns in the weather, mathematicians seek structure in the governing equations, such as groups of transformations, Hamiltonian structure and stability.
"Invisible in the Storm" is the first book to recount the history, personalities, and ideas behind one of the greatest scientific successes of modern times--the use of mathematics in weather prediction. Although humans have tried to forecast weather for millennia, mathematical principles were used in meteorology only after the turn of the twentieth century. From the first proposal for using mathematics to predict weather, to the supercomputers that now process meteorological information gathered from satellites and weather stations, Ian Roulstone and John Norbury narrate the groundbreaking evolution of modern forecasting. The authors begin with Vilhelm Bjerknes, a Norwegian physicist and meteorologist who in 1904 came up with a method now known as numerical weather prediction. Although his proposed calculations could not be implemented without computers, his early attempts, along with those of Lewis Fry Richardson, marked a turning point in atmospheric science. Roulstone and Norbury describe the discovery of chaos theory's butterfly effect, in which tiny variations in initial conditions produce large variations in the long-term behavior of a system--dashing the hopes of perfect predictability for weather patterns. They explore how weather forecasters today formulate their ideas through state-of-the-art mathematics, taking into account limitations to predictability. Millions of variables--known, unknown, and approximate--as well as billions of calculations, are involved in every forecast, producing informative and fascinating modern computer simulations of the Earth system. Accessible and timely, "Invisible in the Storm" explains the crucial role of mathematics in understanding the ever-changing weather.
|
![]() ![]() You may like...Not available
|