Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 7 of 7 matches in All Departments
The function of a filter is to transform a signal into another one more suit able for a given purpose. As such, filters find applications in telecommunica tions, radar, sonar, remote sensing, geophysical signal processing, image pro cessing, and computer vision. Numerous authors have considered deterministic and statistical approaches for the study of passive, active, digital, multidimen sional, and adaptive filters. Most of the filters considered were linear although the theory of nonlinear filters is developing rapidly, as it is evident by the numerous research papers and a few specialized monographs now available. Our research interests in this area created opportunity for cooperation and co authored publications during the past few years in many nonlinear filter families described in this book. As a result of this cooperation and a visit from John Pitas on a research leave at the University of Toronto in September 1988, the idea for this book was first conceived. The difficulty in writing such a mono graph was that the area seemed fragmented and no general theory was available to encompass the many different kinds of filters presented in the literature. However, the similarities of some families of nonlinear filters and the need for such a monograph providing a broad overview of the whole area made the pro ject worthwhile. The result is the book now in your hands, typeset at the Department of Electrical Engineering of the University of Toronto during the summer of 1989."
Focused on the mathematical foundations of social media analysis, Graph-Based Social Media Analysis provides a comprehensive introduction to the use of graph analysis in the study of social and digital media. It addresses an important scientific and technological challenge, namely the confluence of graph analysis and network theory with linear algebra, digital media, machine learning, big data analysis, and signal processing. Supplying an overview of graph-based social media analysis, the book provides readers with a clear understanding of social media structure. It uses graph theory, particularly the algebraic description and analysis of graphs, in social media studies. The book emphasizes the big data aspects of social and digital media. It presents various approaches to storing vast amounts of data online and retrieving that data in real-time. It demystifies complex social media phenomena, such as information diffusion, marketing and recommendation systems in social media, and evolving systems. It also covers emerging trends, such as big data analysis and social media evolution. Describing how to conduct proper analysis of the social and digital media markets, the book provides insights into processing, storing, and visualizing big social media data and social graphs. It includes coverage of graphs in social and digital media, graph and hyper-graph fundamentals, mathematical foundations coming from linear algebra, algebraic graph analysis, graph clustering, community detection, graph matching, web search based on ranking, label propagation and diffusion in social media, graph-based pattern recognition and machine learning, graph-based pattern classification and dimensionality reduction, and much more. This book is an ideal reference for scientists and engineers working in social media and digital media production and distribution. It is also suitable for use as a textbook in undergraduate or graduate courses on digital media, social media, or social networks.
Focused on the mathematical foundations of social media analysis, Graph-Based Social Media Analysis provides a comprehensive introduction to the use of graph analysis in the study of social and digital media. It addresses an important scientific and technological challenge, namely the confluence of graph analysis and network theory with linear algebra, digital media, machine learning, big data analysis, and signal processing. Supplying an overview of graph-based social media analysis, the book provides readers with a clear understanding of social media structure. It uses graph theory, particularly the algebraic description and analysis of graphs, in social media studies. The book emphasizes the big data aspects of social and digital media. It presents various approaches to storing vast amounts of data online and retrieving that data in real-time. It demystifies complex social media phenomena, such as information diffusion, marketing and recommendation systems in social media, and evolving systems. It also covers emerging trends, such as big data analysis and social media evolution. Describing how to conduct proper analysis of the social and digital media markets, the book provides insights into processing, storing, and visualizing big social media data and social graphs. It includes coverage of graphs in social and digital media, graph and hyper-graph fundamentals, mathematical foundations coming from linear algebra, algebraic graph analysis, graph clustering, community detection, graph matching, web search based on ranking, label propagation and diffusion in social media, graph-based pattern recognition and machine learning, graph-based pattern classification and dimensionality reduction, and much more. This book is an ideal reference for scientists and engineers working in social media and digital media production and distribution. It is also suitable for use as a textbook in undergraduate or graduate courses on digital media, social media, or social networks.
Color Image Processing: Methods and Applications embraces two decades of extraordinary growth in the technologies and applications for color image processing. The book offers comprehensive coverage of state-of-the-art systems, processing techniques, and emerging applications of digital color imaging. To elucidate the significant progress in specialized areas, the editors invited renowned authorities to address specific research challenges and recent trends in their area of expertise. The book begins by focusing on color fundamentals, including color management, gamut mapping, and color constancy. The remaining chapters detail the latest techniques and approaches to contemporary and traditional color image processing and analysis for a broad spectrum of sophisticated applications, including: Vector and semantic processing Secure imaging Object recognition and feature detection Facial and retinal image analysis Digital camera image processing Spectral and superresolution imaging Image and video colorization Virtual restoration of artwork Video shot segmentation and surveillance Color Image Processing: Methods and Applications is a versatile resource that can be used as a graduate textbook or as stand-alone reference for the design and the implementation of various image and video processing tasks for cutting-edge applications. This book is part of the Digital Imaging and Computer Vision series.
The function of a filter is to transform a signal into another one more suit able for a given purpose. As such, filters find applications in telecommunica tions, radar, sonar, remote sensing, geophysical signal processing, image pro cessing, and computer vision. Numerous authors have considered deterministic and statistical approaches for the study of passive, active, digital, multidimen sional, and adaptive filters. Most of the filters considered were linear although the theory of nonlinear filters is developing rapidly, as it is evident by the numerous research papers and a few specialized monographs now available. Our research interests in this area created opportunity for cooperation and co authored publications during the past few years in many nonlinear filter families described in this book. As a result of this cooperation and a visit from John Pitas on a research leave at the University of Toronto in September 1988, the idea for this book was first conceived. The difficulty in writing such a mono graph was that the area seemed fragmented and no general theory was available to encompass the many different kinds of filters presented in the literature. However, the similarities of some families of nonlinear filters and the need for such a monograph providing a broad overview of the whole area made the pro ject worthwhile. The result is the book now in your hands, typeset at the Department of Electrical Engineering of the University of Toronto during the summer of 1989."
This book is the most up-to-date introduction to digital video and television. It is very suitable to university/college/arts students and video enthusiasts, by providing an accurate presentation, without too many mathematical/technical details. It covers all technologies related to video shooting/acquisition, editing, compression, optical storage, broadcasting and display. To this end, various video compression methods (MPEG-2, MPEG-4, HEVC) and broadcasting systems (ATSC, DVB, DTMB, ISDB) are overviewed. Novel trends in video streaming, webcasting and mobile video are presented. An overview of the latest trends in production, post-production and visual effects is presented for movie and TV content creation. Human perception of video and quality enhancement through video processing are detailed. Video analysis, description and archiving for fast video search are overviewed. Finally, novel trends in 3DTV and digital cinema are presented.
A unique collection of algorithms and lab experiments for practitioners and researchers of digital image processing technology
|
You may like...
|