Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 17 of 17 matches in All Departments
Interest in the area of control of systems defined by partial differential Equations has increased strongly in recent years. A major reason has been the requirement of these systems for sensible continuum mechanical modelling and optimization or control techniques which account for typical physical phenomena. Particular examples of problems on which substantial progress has been made are the control and stabilization of mechatronic structures, the control of growth of thin films and crystals, the control of Laser and semi-conductor devices, and shape optimization problems for turbomachine blades, shells, smart materials and microdiffractive optics. This volume contains original articles by world reknowned experts in the fields of optimal control of partial differential equations, shape optimization, numerical methods for partial differential equations and fluid dynamics, all of whom have contributed to the analysis and solution of many of the problems discussed. The collection provides a state-of-the-art overview of the most challenging and exciting recent developments in the field. It is geared towards postgraduate students and researchers dealing with the theoretical and practical aspects of a wide variety of high technology problems in applied mathematics, fluid control, optimal design, and computer modelling.
This IMA Volume in Mathematics and its Applications GEOMETRIC METHODS IN INVERSE PROBLEMS AND PDE CONTROL contains a selection of articles presented at 2001 IMA Summer Program with the same title. We would like to thank Christopher B. Croke (University of Penn sylva nia), Irena Lasiecka (University of Virginia), Gunther Uhlmann (University of Washington), and Michael S. Vogelius (Rutgers University) for their ex cellent work as organizers of the two-week summer workshop and for editing the volume. We also take this opportunity to thank the National Science Founda tion for their support of the IMA. Series Editors Douglas N. Arnold, Director of the IMA Fadil Santosa, Deputy Director of the IMA v PREFACE This volume contains a selected number of articles based on lectures delivered at the IMA 2001 Summer Program on "Geometric Methods in Inverse Problems and PDE Control. " The focus of this program was some common techniques used in the study of inverse coefficient problems and control problems for partial differential equations, with particular emphasis on their strong relation to fundamental problems of geometry. Inverse coef ficient problems for partial differential equations arise in many application areas, for instance in medical imaging, nondestructive testing, and geophys ical prospecting. Control problems involving partial differential equations may arise from the need to optimize a given performance criterion, e. g. , to dampen out undesirable vibrations of a structure , or more generally, to obtain a prescribed behaviour of the dynamics.
This book is devoted to the study of coupled partial differential equation models, which describe complex dynamical systems occurring in modern scientific applications such as fluid/flow-structure interactions. The first chapter provides a general description of a fluid-structure interaction, which is formulated within a realistic framework, where the structure subject to a frictional damping moves within the fluid. The second chapter then offers a multifaceted description, with often surprising results, of the case of the static interface; a case that is argued in the literature to be a good model for small, rapid oscillations of the structure. The third chapter describes flow-structure interaction where the compressible Navier-Stokes equations are replaced by the linearized Euler equation, while the solid is taken as a nonlinear plate, which oscillates in the surrounding gas flow. The final chapter focuses on a the equations of nonlinear acoustics coupled with linear acoustics or elasticity, as they arise in the context of high intensity ultrasound applications.
Originally published in 2000, this is the second volume of a comprehensive two-volume treatment of quadratic optimal control theory for partial differential equations over a finite or infinite time horizon, and related differential (integral) and algebraic Riccati equations. Both continuous theory and numerical approximation theory are included. The authors use an abstract space, operator theoretic approach, which is based on semigroups methods, and which unifies across a few basic classes of evolution. The various abstract frameworks are motivated by, and ultimately directed to, partial differential equations with boundary/point control. Volume 2 is focused on the optimal control problem over a finite time interval for hyperbolic dynamical systems. A few abstract models are considered, each motivated by a particular canonical hyperbolic dynamics. It presents numerous fascinating results. These volumes will appeal to graduate students and researchers in pure and applied mathematics and theoretical engineering with an interest in optimal control problems.
Originally published in 2000, this is the first volume of a comprehensive two-volume treatment of quadratic optimal control theory for partial differential equations over a finite or infinite time horizon, and related differential (integral) and algebraic Riccati equations. Both continuous theory and numerical approximation theory are included. The authors use an abstract space, operator theoretic approach, which is based on semigroups methods, and which is unifying across a few basic classes of evolution. The various abstract frameworks are motivated by, and ultimately directed to, partial differential equations with boundary/point control. Volume 1 includes the abstract parabolic theory for the finite and infinite cases and corresponding PDE illustrations as well as various abstract hyperbolic settings in the finite case. It presents numerous fascinating results. These volumes will appeal to graduate students and researchers in pure and applied mathematics and theoretical engineering with an interest in optimal control problems.
Analysis and Optimization of Differential Systems focuses on the qualitative aspects of deterministic and stochastic differential equations. Areas covered include: Ordinary and partial differential systems; Optimal control of deterministic and stochastic evolution equations; Control theory of Partial Differential Equations (PDE's); Optimization methods in PDE's with numerous applications to mechanics and physics; Inverse problems; Stability theory; Abstract optimization problems; Calculus of variations; Numerical treatment of solutions to differential equations and related optimization problems. These research fields are under very active development and the present volume should be of interest to students and researchers working in applied mathematics or in system engineering. This volume contains selected contributions presented during the International Working Conference on Analysis and Optimization of Differential Systems, which was sponsored by the International Federation for Information Processing (IFIP) and held in Constanta, Romania in September 2002. Among the aims of this conference was the creation of new international contacts and collaborations, taking advantage of the new developments in Eastern Europe, particularly in Romania. The conference benefited from the support of the European Union via the EURROMMAT program.
Interest in the area of control of systems defined by partial differential Equations has increased strongly in recent years. A major reason has been the requirement of these systems for sensible continuum mechanical modelling and optimization or control techniques which account for typical physical phenomena. Particular examples of problems on which substantial progress has been made are the control and stabilization of mechatronic structures, the control of growth of thin films and crystals, the control of Laser and semi-conductor devices, and shape optimization problems for turbomachine blades, shells, smart materials and microdiffractive optics. This volume contains original articles by world reknowned experts in the fields of optimal control of partial differential equations, shape optimization, numerical methods for partial differential equations and fluid dynamics, all of whom have contributed to the analysis and solution of many of the problems discussed. The collection provides a state-of-the-art overview of the most challenging and exciting recent developments in the field. It is geared towards postgraduate students and researchers dealing with the theoretical and practical aspects of a wide variety of high technology problems in applied mathematics, fluid control, optimal design, and computer modelling.
In the study of mathematical models that arise in the context of concrete - plications, the following two questions are of fundamental importance: (i) we- posedness of the model, including existence and uniqueness of solutions; and (ii) qualitative properties of solutions. A positive answer to the ?rst question, - ing of prime interest on purely mathematical grounds, also provides an important test of the viability of the model as a description of a given physical phenomenon. An answer or insight to the second question provides a wealth of information about the model, hence about the process it describes. Of particular interest are questions related to long-time behavior of solutions. Such an evolution property cannot be v- i?ed empirically, thus any in a-priori information about the long-time asymptotics can be used in predicting an ultimate long-time response and dynamical behavior of solutions. In recent years, this set of investigations has attracted a great deal of attention. Consequent efforts have then resulted in the creation and infusion of new methods and new tools that have been responsible for carrying out a successful an- ysis of long-time behavior of several classes of nonlinear PDEs.
DYNAMICS REPORTED reports on recent developments in dynamical systems. Dynamical systems of course originated from ordinary differential equations. Today, dynamical systems cover a much larger area, including dynamical processes described by functional and integral equations, by partial and stochastic differential equations, etc. Dynamical systems have involved remarkably in recent years. A wealth of new phenomena, new ideas and new techniques are proving to be of considerable interest to scientists in rather different fields. It is not surprising that thousands of publications on the theory itself and on its various applications are appearing DYNAMICS REPORTED presents carefully written articles on major subjects in dynamical systems and their applications, addressed not only to specialists but also to a broader range of readers including graduate students. Topics are advanced, while detailed exposition of ideas, restriction to typical results - rather than the most general one- and, last but not least, lucid proofs help to gain the utmost degree of clarity. It is hoped, that DYNAMICS REPORTED will be useful for those entering the field and will stimulate an exchange of ideas among those working in dynamical systems Summer 1991 Christopher K. R. T Jones Drs Kirchgraber Hans-Otto Walther Managing Editors Table of Contents Limit Relative Category and Critical Point Theory G. Fournier, D. Lupo, M. Ramos, M. Willem 1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Relative Category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3. Relative Cupiength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4. Limit Relative Category . . . . . . . . . . . . . . . . . . . . . . . '" . . . . " . . . . . . . . . . . . . . . . 10 5. The Deformation Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 6. Critical Point Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 7. Some Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
This IMA Volume in Mathematics and its Applications GEOMETRIC METHODS IN INVERSE PROBLEMS AND PDE CONTROL contains a selection of articles presented at 2001 IMA Summer Program with the same title. We would like to thank Christopher B. Croke (University of Penn sylva nia), Irena Lasiecka (University of Virginia), Gunther Uhlmann (University of Washington), and Michael S. Vogelius (Rutgers University) for their ex cellent work as organizers of the two-week summer workshop and for editing the volume. We also take this opportunity to thank the National Science Founda tion for their support of the IMA. Series Editors Douglas N. Arnold, Director of the IMA Fadil Santosa, Deputy Director of the IMA v PREFACE This volume contains a selected number of articles based on lectures delivered at the IMA 2001 Summer Program on "Geometric Methods in Inverse Problems and PDE Control. " The focus of this program was some common techniques used in the study of inverse coefficient problems and control problems for partial differential equations, with particular emphasis on their strong relation to fundamental problems of geometry. Inverse coef ficient problems for partial differential equations arise in many application areas, for instance in medical imaging, nondestructive testing, and geophys ical prospecting. Control problems involving partial differential equations may arise from the need to optimize a given performance criterion, e. g. , to dampen out undesirable vibrations of a structure , or more generally, to obtain a prescribed behaviour of the dynamics.
In the study of mathematical models that arise in the context of concrete - plications, the following two questions are of fundamental importance: (i) we- posedness of the model, including existence and uniqueness of solutions; and (ii) qualitative properties of solutions. A positive answer to the ?rst question, - ing of prime interest on purely mathematical grounds, also provides an important test of the viability of the model as a description of a given physical phenomenon. An answer or insight to the second question provides a wealth of information about the model, hence about the process it describes. Of particular interest are questions related to long-time behavior of solutions. Such an evolution property cannot be v- i?ed empirically, thus any in a-priori information about the long-time asymptotics can be used in predicting an ultimate long-time response and dynamical behavior of solutions. In recent years, this set of investigations has attracted a great deal of attention. Consequent efforts have then resulted in the creation and infusion of new methods and new tools that have been responsible for carrying out a successful an- ysis of long-time behavior of several classes of nonlinear PDEs.
This is the first volume of a comprehensive and up-to-date treatment of quadratic optimal control theory for partial differential equations over a finite or infinite time horizon, and related differential (integral) and algebraic Riccati equations. The authors describe both continuous theory and numerical approximation. They use an abstract space, operator theoretic approach, based on semigroups methods and unifying across a few basic classes of evolution. The various abstract frameworks are motivated by, and ultimately directed to, partial differential equations with boundary/point control. Volume I includes the abstract parabolic theory (continuous theory and numerical approximation theory) for the finite and infinite cases and corresponding PDE illustrations, and presents numerous new results. These volumes will appeal to graduate students and researchers in pure and applied mathematics and theoretical engineering with an interest in optimal control problems.
This book consists of five introductory contributions by leading mathematicians on the functional analytic treatment of evolutions equations. In particular the contributions deal with Markov semigroups, maximal L DEGREESp-regularity, optimal control problems for boundary and point control systems, parabolic moving boundary problems and parabolic nonautonomous evolution equations. The book is addressed to PhD students, young researchers and mathematicians doing research in one of the above topics.
This book provides, in a unified framework, an updated and rather comprehensive treatment contered on the theory of ot- pimal control with quadratic cost functional for abstract linear systems with application to boundary/point control problems for partial differential equations (distributed pa- rameter systems). The book culminates with the analysisof differential and algebraic Riccati equations which arise in the pointwisefe- edback synthesis of the optimal pair. It incorporates the critical topics of optimal irregularity of solutions to mi- xed problems for partial differential equations, exact con- trollability, and uniform feedback stabilization. It covers the main results of the theory - which has reached a consi- derable degree of maturity over the last few years - as well asthe authors' basic philosophy behind it. Moreover, it provides numerous illustrative examples of boundary/point control problems for partial differential equations, where the abstract theory applies. However, in line with the purpose of the manuscript, many technical pro- ofs are referred to in the literature. Thus, the manuscript should prove useful not only to mathematicians and theoreti- cal scientists with expertise in partial differential equa- tions, operator theory, numerical analysis, control theory, etc., but also to those who simple wish to orient themselves with the scope and status of the theory presently available. Both continuous theory and numerical approximation theory thereof are included.
This book discusses inverse problems that arise in the estimation and control of distributed parameter systems in the face of uncertainty, as well as applications of these techniques to mathematical modelling for problems of applied system analysis (eg environmental issues, technological issues, technological processes, biomethematical models, mathematical economy and other fields). The main topics of the research papers which comprise this book are: estimation of the state and of the parameters for distributed parameter systems, control problems with state constraints, exponential stabilization and shape optimization. This book of proceedings on control theory, applied system analysis and estimation theory is intended for researchers, advanced students and engineers.
This volume comprises the Proceedings of the IFIP 7/2 Conference on Control Problems for Systems Described by Partial Differential Equations and Applications held at the University of Florida, Gainesville, Florida in February 1987. The papers presented in this volume encompass several main directions of current research in the area including optimal control for variational inequalities, free boundary value problems, shape optimization, pareto-control, stabilization and controllability of hyperbolic equations, control problems for large space flexible structures, identification and estimation of distributed parameter systems, and numerical methods for control problems.
Volume II focuses on the optimal control problem over a finite time interval for hyperbolic dynamical systems. The chapters consider some abstract models, each motivated by a particular canonical hyperbolic dynamics, and present numerous new results.
|
You may like...
Discovering Daniel - Finding Our Hope In…
Amir Tsarfati, Rick Yohn
Paperback
|