Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 2 of 2 matches in All Departments
These lecture notes study the interplay between randomness and geometry of graphs. The first part of the notes reviews several basic geometric concepts, before moving on to examine the manifestation of the underlying geometry in the behavior of random processes, mostly percolation and random walk. The study of the geometry of infinite vertex transitive graphs, and of Cayley graphs in particular, is fairly well developed. One goal of these notes is to point to some random metric spaces modeled by graphs that turn out to be somewhat exotic, that is, they admit a combination of properties not encountered in the vertex transitive world. These include percolation clusters on vertex transitive graphs, critical clusters, local and scaling limits of graphs, long range percolation, CCCP graphs obtained by contracting percolation clusters on graphs, and stationary random graphs, including the uniform infinite planar triangulation (UIPT) and the stochastic hyperbolic planar quadrangulation (SHIQ).
This volume contains a collection of studies in the areas of complexity theory and property testing. The 21 pieces of scientific work included were conducted at different times, mostly during the last decade. Although most of these works have been cited in the literature, none of them was formally published before. Within complexity theory the topics include constant-depth Boolean circuits, explicit construction of expander graphs, interactive proof systems, monotone formulae for majority, probabilistically checkable proofs (PCPs), pseudorandomness, worst-case to average-case reductions, and zero-knowledge proofs. Within property testing the topics include distribution testing, linearity testing, lower bounds on the query complexity (of property testing), testing graph properties, and tolerant testing. A common theme in this collection is the interplay between randomness and computation.
|
You may like...
|