Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
A practical approach to chemical reaction kinetics from basic concepts to laboratory methods featuring numerous real-world examples and case studies This book focuses on fundamental aspects of reaction kinetics with an emphasis on mathematical methods for analyzing experimental data and interpreting results. It describes basic concepts of reaction kinetics, parameters for measuring the progress of chemical reactions, variables that affect reaction rates, and ideal reactor performance. Mathematical methods for determining reaction kinetic parameters are described in detail with the help of real-world examples and fully-worked step-by-step solutions. Both analytical and numerical solutions are exemplified. The book begins with an introduction to the basic concepts of stoichiometry, thermodynamics, and chemical kinetics. This is followed by chapters featuring in-depth discussions of reaction kinetics; methods for studying irreversible reactions with one, two and three components; reversible reactions; and complex reactions. In the concluding chapters the author addresses reaction mechanisms, enzymatic reactions, data reconciliation, parameters, and examples of industrial reaction kinetics. Throughout the book industrial case studies are presented with step-by-step solutions, and further problems are provided at the end of each chapter. * Takes a practical approach to chemical reaction kinetics basic concepts and methods * Features numerous illustrative case studies based on the author s extensive experience in the industry * Provides essential information for chemical and process engineers, catalysis researchers, and professionals involved in developing kinetic models * Functions as a student textbook on the basic principles of chemical kinetics for homogeneous catalysis * Describes mathematical methods to determine reaction kinetic parameters with the help of industrial case studies, examples, and step-by-step solutions Chemical Reaction Kinetics is a valuable working resource for academic researchers, scientists, engineers, and catalyst manufacturers interested in kinetic modeling, parameter estimation, catalyst evaluation, process development, reactor modeling, and process simulation. It is also an ideal textbook for undergraduate and graduate-level courses in chemical kinetics, homogeneous catalysis, chemical reaction engineering, and petrochemical engineering, biotechnology.
Presents detailed information and study cases on experiments on hydrotreating catalysts for the petroleum industry Catalytic hydrotreating (HDT) is a process used in the petroleum refining industry for upgrading hydrocarbon streams--removing impurities, eliminating metals, converting asphaltene molecules, and hydrocracking heavy fractions. The major applications of HDT in refinery operations include feed pretreatment for conversion processes, post-hydrotreating distillates, and upgrading heavy crude oils. Designing HDT processes and catalysts for successful commercial application requires experimental studies based on appropriate methodologies. Experimental Methods for Evaluation of Hydrotreating Catalysts provides detailed descriptions of experiments in different reaction scales for studying the hydrotreating of various petroleum distillates. Emphasizing step-by-step methodologies in each level of experimentation, this comprehensive volume presents numerous examples of evaluation methods, operating conditions, reactor and catalyst types, and process configurations. In-depth chapters describe experimental setup and procedure, analytical methods, calculations, testing and characterization of catalyst and liquid products, and interpretation of experiment data and results. The text describes experimental procedure at different levels of experimentation--glass reactor, batch reactor, continuous stirred tank reactor, and multiple scales of tubular reactors--using model compounds, middle distillates and heavy oil. This authoritative volume: Introduces experimental setups used for conducting research studies, such as type of operation, selection of reactor, and analysis of products Features examples focused on the evaluation of different reaction parameters and catalysts with a variety of petroleum feedstocks Provides experimental data collected from different reaction scales Includes experiments for determining mass transfer limitations and deviation from ideality of flow pattern Presents contributions from leading scientists and researchers in the field of petroleum refining Experimental Methods for Evaluation of Hydrotreating Catalysts is an indispensable reference for researchers and professionals working in the area of catalytic hydrotreating, as well as an ideal textbook for courses in fields such as chemical engineering, petrochemical engineering, and biotechnology.
Modeling and Simulation of Catalytic Reactors for Petroleum Refining deals with fundamental descriptions of the main conversion processes employed in the petroleum refining industry: catalytic hydrotreating, catalytic reforming, and fluid catalytic cracking. Common approaches for modeling of catalytic reactors for steady-state and dynamic simulations are also described and analyzed. Aspects such as thermodynamics, reaction kinetics, process variables, process scheme, and reactor design are discussed in detail from both research and commercial points of view. Results of simulation with the developed models are compared with those determined at pilot plant scale as well as commercial practice. Kinetics data used in the reactor model are either taken from the literature or obtained under controlled experiments at the laboratory.
|
You may like...
|