![]() |
![]() |
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
This pioneering volume comprehensively and systematically describes the Parameter Space Investigation (FSI) method, a novel concept for choosing the optimal design variables in solving multicriteria problems. Emphasizing the construction of the feasible solution set, the authors demonstrate state-of-the-art multicriteria optimization and identification. Applicable to a wide range of engineering problems in machines, structures and instrument design, this method enables readers to efficiently design higher-quality, lower cost objects with less metal requirements, vibration and noise, and with lower dynamic loads and energy consumption; determine optimal solutions, regardless of the number of criteria involved, and to identify relationships among different criteria and between criteria and design variables; accurately account for discrepancies between theoretical and actual characteristics, using a special set of adequacy criteria; and determine optimal design variables for complex finite element models. In addition, the book helps readers enhance the potential of the PSI method with theoretical investigations and algorithms for approximating the feasible solutions set and Pareto optimal set, facilitate proficient problem-solving by incorporating recently obtained results from the theory of uniformly distributed sequences, and evaluate design procedures by observing examples ranging from machine tools and agricultural equipment to automobiles and aviation. This practical, in-depth treatment of multicriteria optimization and engineering is essential for engineers and designers working in research and development of manufacturing machines, mechanisms and structures. It is also an importanttext for students of applied mechanics, mechanical engineering, optimal control and operation research.
Optimization methods have been considered in many articles, monographs, and handbooks. However, experts continue to experience difficulties in correctly stating optimization problems in engineering. These troubles typically emerge when trying to define the set of feasible solutions, i.e. the constraints imposed on the design variables, functional relationships, and criteria. The Parameter Space Investigation (PSI) method was developed specifically for the correct statement and solution of engineering optimization problems. It is implemented in the MOVI 1.0 software package, a tutorial version of which is included in this book. The PSI method and MOVI 1.0 software package have a wide range of applications. The PSI method can be successfully used for the statement and solution of the following multicriteria problems: design, identification, design with control, the optional development of prototypes, finite element models, and the decomposition and aggregation of large-scale systems. Audience: The PSI method will be of interest to researchers, graduate students, and engineers who work in engineering, mathematical modelling and industrial mathematics, and in computer and information science.
method enables readers to: *efficiently design higher-quality, lower cost objects with less metal requirements, vibration and noise, and with lower dynamic loads and energy consumption *determine optimal solutions, regardless of the number of criteria involved, and to identify relationships among different criteria and between criteria and design variables *accurately account for discrepancies between theoretical and actual characteristics, using a special set of adequacy criteria *determine optimal design variables for complex finite element models In addition, the book helps readers: *enhance the potential of the PSI method with theoretical investigations and algorithms for approximating the feasible solutions set and Pareto optimal set *facilitate proficient problem-solving by incorporating recently obtained results from the theory of uniformly distributed sequences *evaluate design procedures by observing examples ranging from machine tools and agricultural equipment to automobiles and aviation This practical, in-depth treatment of multicriteria optimization and engineering is essential for engineers and designers working in research and development of manufacturing machines, mechanisms and structures. It is also an important text for students of applied mathematics, mechanical engineering, optimal control and operations research.
Optimization methods have been considered in many articles, monographs, and handbooks. However, experts continue to experience difficulties in correctly stating optimization problems in engineering. These troubles typically emerge when trying to define the set of feasible solutions, i.e. the constraints imposed on the design variables, functional relationships, and criteria. The Parameter Space Investigation (PSI) method was developed specifically for the correct statement and solution of engineering optimization problems. It is implemented in the MOVI 1.0 software package, a tutorial version of which is included in this book. The PSI method and MOVI 1.0 software package have a wide range of applications. The PSI method can be successfully used for the statement and solution of the following multicriteria problems: design, identification, design with control, the optional development of prototypes, finite element models, and the decomposition and aggregation of large-scale systems. Audience: The PSI method will be of interest to researchers, graduate students, and engineers who work in engineering, mathematical modelling and industrial mathematics, and in computer and information science.
|
![]() ![]() You may like...
Avengers: 4-Movie Collection - The…
Robert Downey Jr., Chris Evans, …
Blu-ray disc
R589
Discovery Miles 5 890
I Shouldnt Be Telling You This
Jeff Goldblum, The Mildred Snitzer Orchestra
CD
R61
Discovery Miles 610
|