0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (1)
  • R5,000 - R10,000 (1)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Complementarity Modeling in Energy Markets (Hardcover, 2013): Steven A. Gabriel, Antonio J. Conejo, J. David Fuller, Benjamin... Complementarity Modeling in Energy Markets (Hardcover, 2013)
Steven A. Gabriel, Antonio J. Conejo, J. David Fuller, Benjamin F. Hobbs, Carlos Ruiz
R4,629 Discovery Miles 46 290 Ships in 12 - 19 working days

This addition to the ISOR series introduces complementarity models in a straightforward and approachable manner and uses them to carry out an in-depth analysis of energy markets, including formulation issues and solution techniques. In a nutshell, complementarity models generalize: a. optimization problems via their Karush-Kuhn-Tucker conditions b. on-cooperative games in which each player may be solving a separate but related optimization problem with potentially overall system constraints (e.g., market-clearing conditions) c. conomic and engineering problems that aren't specifically derived from optimization problems (e.g., spatial price equilibria) d. roblems in which both primal and dual variables (prices) appear in the original formulation (e.g., The National Energy Modeling System (NEMS) or its precursor, PIES). As such, complementarity models are a very general and flexible modeling format. A natural question is why concentrate on energy markets for this complementarity approach? s it turns out, energy or other markets that have game theoretic aspects are best modeled by complementarity problems. The reason is that the traditional perfect competition approach no longer applies due to deregulation and restructuring of these markets and thus the corresponding optimization problems may no longer hold. Also, in some instances it is important in the original model formulation to involve both primal variables (e.g., production) as well as dual variables (e.g., market prices) for public and private sector energy planning. Traditional optimization problems can not directly handle this mixing of primal and dual variables but complementarity models can and this makes them all that more effective for decision-makers.

Complementarity Modeling in Energy Markets (Paperback, 2013 ed.): Steven A. Gabriel, Antonio J. Conejo, J. David Fuller,... Complementarity Modeling in Energy Markets (Paperback, 2013 ed.)
Steven A. Gabriel, Antonio J. Conejo, J. David Fuller, Benjamin F. Hobbs, Carlos Ruiz
R5,418 Discovery Miles 54 180 Ships in 10 - 15 working days

This addition to the ISOR series introduces complementarity models in a straightforward and approachable manner and uses them to carry out an in-depth analysis of energy markets, including formulation issues and solution techniques. In a nutshell, complementarity models generalize: a. optimization problems via their Karush-Kuhn-Tucker conditions b. on-cooperative games in which each player may be solving a separate but related optimization problem with potentially overall system constraints (e.g., market-clearing conditions) c. conomic and engineering problems that aren't specifically derived from optimization problems (e.g., spatial price equilibria) d. roblems in which both primal and dual variables (prices) appear in the original formulation (e.g., The National Energy Modeling System (NEMS) or its precursor, PIES). As such, complementarity models are a very general and flexible modeling format. A natural question is why concentrate on energy markets for this complementarity approach? s it turns out, energy or other markets that have game theoretic aspects are best modeled by complementarity problems. The reason is that the traditional perfect competition approach no longer applies due to deregulation and restructuring of these markets and thus the corresponding optimization problems may no longer hold. Also, in some instances it is important in the original model formulation to involve both primal variables (e.g., production) as well as dual variables (e.g., market prices) for public and private sector energy planning. Traditional optimization problems can not directly handle this mixing of primal and dual variables but complementarity models can and this makes them all that more effective for decision-makers.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Spanish Short Stories - 9 Simple and…
Language Learning University Hardcover R727 R643 Discovery Miles 6 430
You Are A Champion Action Planner - 50…
Marcus Rashford Paperback R220 R200 Discovery Miles 2 000
Schritte plus Alpha neu - Kursbuch
Paperback R496 Discovery Miles 4 960
The High Treason Club - The Boeremag On…
Karin Mitchell Paperback R340 R279 Discovery Miles 2 790
Aquaponics - A Comprehensive Guide to…
Sheila Brown Hardcover R695 R611 Discovery Miles 6 110
German Vocabulary
Liliane Arnet Cards R600 Discovery Miles 6 000
Like Sodium In Water - A Memoir Of Home…
Hayden Eastwood Paperback  (1)
R790 Discovery Miles 7 900
Living and Dying with AIDS
P. I. Ahmed Hardcover R3,044 Discovery Miles 30 440
Snow Like Ashes
Sara Raasch Paperback  (2)
R296 R247 Discovery Miles 2 470
The Chicago Haymarket Affair: A Guide to…
Joseph Anthony Rulli Paperback R534 R494 Discovery Miles 4 940

 

Partners