![]() |
![]() |
Your cart is empty |
||
Showing 1 - 10 of 10 matches in All Departments
For undergraduate courses in facilities planning and material handling. Based on ten years' teaching experience, this text takes a practical, teachable approach to facilities planning and design. A class design project centered on a factory incorporates the theoretical aspects of facilities planning and design. Motivating and illustrating mathematical models wherever possible, the text explores facilities planning, capstone design, and even simulation modelling.
This handbook surveys important stochastic problems and models in manufacturing system operations and their stochastic analysis. Using analytical models to design and control manufacturing systems and their operations entail critical stochastic performance analysis as well as integrated optimization models of these systems. Topics deal with the areas of facilities planning, transportation, and material handling systems, logistics and supply chain management, and integrated productivity and quality models covering: * Stochastic modeling and analysis of manufacturing systems * Design, analysis, and optimization of manufacturing systems * Facilities planning, transportation, and material handling systems analysis * Production planning, scheduling systems, management, and control * Analytical approaches to logistics and supply chain management * Integrated productivity and quality models, and their analysis * Literature surveys of issues relevant in manufacturing systems * Case studies of manufacturing system operations and analysis Today's manufacturing system operations are becoming increasingly complex. Advanced knowledge of best practices for treating these problems is not always well known. The purpose of the book is to create a foundation for the development of stochastic models and their analysis in manufacturing system operations. Given the handbook nature of the volume, introducing basic principles, concepts, and algorithms for treating these problems and their solutions is the main intent of this handbook. Readers unfamiliar with these research areas will be able to find a research foundation for studying these problems and systems.
The book examines the performance and optimization of systems where queueing and congestion are important constructs. Both finite and infinite queueing systems are examined. Many examples and case studies are utilized to indicate the breadth and depth of the queueing systems and their range of applicability. Blocking of these processes is very important and the book shows how to deal with this problem in an effective way and not only compute the performance measures of throughput, cycle times, and WIP but also to optimize the resources within these systems. The book is aimed at advanced undergraduate, graduate, and professionals and academics interested in network design, queueing performance models and their optimization. It assumes that the audience is fairly sophisticated in their mathematical understanding, although the explanations of the topics within the book are fairly detailed.
Analysis and Modeling of Manufacturing Systems is a set of papers on some of the newest research and applications of mathematical and computational techniques to manufacturing systems and supply chains. These papers deal with fundamental questions (how to predict factory performance: how to operate production systems) and explicitly treat the stochastic nature of failures, operation times, demand, and other important events. Analysis and Modeling of Manufacturing Systems will be of interest to readers with a strong background in operations research, including researchers and mathematically sophisticated practitioners.
The book examines the performance and optimization of systems where queueing and congestion are important constructs. Both finite and infinite queueing systems are examined. Many examples and case studies are utilized to indicate the breadth and depth of the queueing systems and their range of applicability. Blocking of these processes is very important and the book shows how to deal with this problem in an effective way and not only compute the performance measures of throughput, cycle times, and WIP but also to optimize the resources within these systems. The book is aimed at advanced undergraduate, graduate, and professionals and academics interested in network design, queueing performance models and their optimization. It assumes that the audience is fairly sophisticated in their mathematical understanding, although the explanations of the topics within the book are fairly detailed.
Analysis and Modeling of Manufacturing Systems is a set of papers on some of the newest research and applications of mathematical and computational techniques to manufacturing systems and supply chains. These papers deal with fundamental questions (how to predict factory performance: how to operate production systems) and explicitly treat the stochastic nature of failures, operation times, demand, and other important events. Analysis and Modeling of Manufacturing Systems will be of interest to readers with a strong background in operations research, including researchers and mathematically sophisticated practitioners.
This handbook surveys important stochastic problems and models in manufacturing system operations and their stochastic analysis. Using analytical models to design and control manufacturing systems and their operations entail critical stochastic performance analysis as well as integrated optimization models of these systems. Topics deal with the areas of facilities planning, transportation, and material handling systems, logistics and supply chain management, and integrated productivity and quality models covering: * Stochastic modeling and analysis of manufacturing systems * Design, analysis, and optimization of manufacturing systems * Facilities planning, transportation, and material handling systems analysis * Production planning, scheduling systems, management, and control * Analytical approaches to logistics and supply chain management * Integrated productivity and quality models, and their analysis * Literature surveys of issues relevant in manufacturing systems * Case studies of manufacturing system operations and analysis Today's manufacturing system operations are becoming increasingly complex. Advanced knowledge of best practices for treating these problems is not always well known. The purpose of the book is to create a foundation for the development of stochastic models and their analysis in manufacturing system operations. Given the handbook nature of the volume, introducing basic principles, concepts, and algorithms for treating these problems and their solutions is the main intent of this handbook. Readers unfamiliar with these research areas will be able to find a research foundation for studying these problems and systems.
This textbook provides an introduction to the use and understanding of optimization and modeling for upper-level undergraduate students in engineering and mathematics. The formulation of optimization problems is founded through concepts and techniques from operations research: Combinatorial Optimization, Linear Programming, and Integer and Nonlinear Programming (COLIN). Computer Science (CS) is also relevant and important given the applications of algorithms and Apps/algorithms (A) in solving optimization problems. Each chapter provides an overview of the main concepts of optimization according to COLINA, providing examples through App Inventor and AMPL software applications. All apps developed through the text are available for download. Additionally, the text includes links to the University of Wisconsin NEOS server, designed to handle more computing-intensive problems in complex optimization. Readers are encouraged to have some background in calculus, linear algebra, and related mathematics.
|
![]() ![]() You may like...
Heart Of A Strong Woman - From Daveyton…
Xoliswa Nduneni-Ngema, Fred Khumalo
Paperback
|