Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
This book covers the essential topics for a second-level course in strength of materials or mechanics of materials, with an emphasis on techniques that are useful for mechanical design. Design typically involves an initial conceptual stage during which many options are considered. At this stage, quick approximate analytical methods are crucial in determining which of the initial proposals are feasible. The ideal would be to get within 30% with a few lines of calculation. The designer also needs to develop experience as to the kinds of features in the geometry or the loading that are most likely to lead to critical conditions. With this in mind, the author tries wherever possible to give a physical and even an intuitive interpretation to the problems under investigation. For example, students are encouraged to estimate the location of weak and strong bending axes and the resulting neutral axis of bending before performing calculations, and the author discusses ways of getting good accuracy with a simple one degree of freedom Rayleigh-Ritz approximation. Students are also encouraged to develop a feeling for structural deformation by performing simple experiments in their outside environment, such as estimating the radius to which an initially straight bar can be bent without producing permanent deformation, or convincing themselves of the dramatic difference between torsional and bending stiffness for a thin-walled open beam section by trying to bend and then twist a structural steel beam by hand-applied loads at one end. In choosing dimensions for mechanical components, designers will expect to be guided by criteria of minimum weight, which with elementary calculations, generally leads to a thin-walled structure as an optimal solution. This consideration motivates the emphasis on thin-walled structures, but also demands that students be introduced to the limits imposed by structural instability. Emphasis is also placed on the effect of manufacturing errors on such highly-designed structures - for example, the effect of load misalignment on a beam with a large ratio between principal stiffness and the large magnification of initial alignment or loading errors in a strut below, but not too far below the buckling load. Additional material can be found on http:
//extras.springer.com/.
This book describes the solution of contact problems with an emphasis on idealized (mainly linear) elastic problems that can be treated with elementary analytical methods. General physical and mathematical features of these solutions are highlighted. Topics covered include the contact of rough surfaces and problems involving adhesive (e.g. van der Waals) forces. The author is a well-known researcher in the subject with hands-on experience of the topics covered and a reputation for lucid explanations. The target readership for the book includes researchers who encounter contact problems but whose primary focus is not contact mechanics. Coverage is also suitable for a graduate course in contact mechanics and end-of-chapter problems are included.
The subject of Elasticity can be approached from several points of view, - pending on whether the practitioner is principally interested in the mat- matical structure of the subject or in its use in engineering applications and, in the latter case, whether essentially numerical or analytical methods are envisaged as the solution method. My ?rst introduction to the subject was in response to a need for information about a speci?c problem in Tribology. As a practising Engineer with a background only in elementary Mechanics of - terials, I approached that problem initially using the concepts of concentrated forces and superposition. Today, with a rather more extensive knowledge of analytical techniques in Elasticity, I still ?nd it helpful to go back to these roots in the elementary theory and think through a problem physically as well as mathematically, whenever some new and unexpected feature presents di?culties in research. This way of thinking will be found to permeate this book. My engineering background will also reveal itself in a tendency to work examples through to ?nal expressions for stresses and displacements, rather than leave the derivation at a point where the remaining manipulations would be mathematically routine. The ?rst edition of this book, published in 1992, was based on a one semester graduate course on Linear Elasticity that I have taught at the U- versity of Michigan since 1983.
This is a first year graduate textbook on linear elasticity, being based on a one semester course taught by the author at the University of Michigan. It is written with the practical engineering reader in mind, dependence on previous knowledge of solid mechanics, continuum, mechanics or mathematics being minimized. Most of the text should be readily intelligible to a reader with an undergraduate background of one or two courses in elementary strength of materials and a rudimentary knowledge of partial differentiation. Emphasis is placed on engineering applications of elasticity and examples are generally worked through to final expressions for the stress and displacement fields in order to explore the engineering consequences of the results. The topics covered are chosen with a view to modern research applications in fracture mechanics, composite materials, tribology and numerical methods. Thus, significant attention is given to crack and contact problems, problems involving interfaces between dissimilar media, thermoelasticity, singular asymptotic stress fields and three-dimensional problems. Problems suitable for class use are included at the end of most of the chapters. These are expressed wherever possible in the form they would arise in engineering - i.e. as a body of a given geometry subjected to prescribed loading - instead of inviting the student to verify' that a given candidate stress function is appropriate to the problem. The text is therefore written in such a way as to enable the student to approach such problems deductively. A solutions manual is available directly from the author (e-mail: [email protected]).
This book describes the solution of contact problems with an emphasis on idealized (mainly linear) elastic problems that can be treated with elementary analytical methods. General physical and mathematical features of these solutions are highlighted. Topics covered include the contact of rough surfaces and problems involving adhesive (e.g. van der Waals) forces. The author is a well-known researcher in the subject with hands-on experience of the topics covered and a reputation for lucid explanations. The target readership for the book includes researchers who encounter contact problems but whose primary focus is not contact mechanics. Coverage is also suitable for a graduate course in contact mechanics and end-of-chapter problems are included.
This book covers the essential topics for a second-level course in strength of materials or mechanics of materials, with an emphasis on techniques that are useful for mechanical design. Design typically involves an initial conceptual stage during which many options are considered. At this stage, quick approximate analytical methods are crucial in determining which of the initial proposals are feasible. The ideal would be to get within 30% with a few lines of calculation. The designer also needs to develop experience as to the kinds of features in the geometry or the loading that are most likely to lead to critical conditions. With this in mind, the author tries wherever possible to give a physical and even an intuitive interpretation to the problems under investigation. For example, students are encouraged to estimate the location of weak and strong bending axes and the resulting neutral axis of bending before performing calculations, and the author discusses ways of getting good accuracy with a simple one degree of freedom Rayleigh-Ritz approximation. Students are also encouraged to develop a feeling for structural deformation by performing simple experiments in their outside environment, such as estimating the radius to which an initially straight bar can be bent without producing permanent deformation, or convincing themselves of the dramatic difference between torsional and bending stiffness for a thin-walled open beam section by trying to bend and then twist a structural steel beam by hand-applied loads at one end. In choosing dimensions for mechanical components, designers will expect to be guided by criteria of minimum weight, which with elementary calculations, generally leads to a thin-walled structure as an optimal solution. This consideration motivates the emphasis on thin-walled structures, but also demands that students be introduced to the limits imposed by structural instability. Emphasis is also placed on the effect of manufacturing errors on such highly-designed structures - for example, the effect of load misalignment on a beam with a large ratio between principal stiffness and the large magnification of initial alignment or loading errors in a strut below, but not too far below the buckling load. Additional material can be found on http:
//extras.springer.com/.
This is a first year graduate textbook on linear elasticity, being based on a one semester course taught by the author at the University of Michigan. It is written with the practical engineering reader in mind, dependence on previous knowledge of solid mechanics, continuum, mechanics or mathematics being minimized. Most of the text should be readily intelligible to a reader with an undergraduate background of one or two courses in elementary strength of materials and a rudimentary knowledge of partial differentiation. Emphasis is placed on engineering applications of elasticity and examples are generally worked through to final expressions for the stress and displacement fields in order to explore the engineering consequences of the results. The topics covered are chosen with a view to modern research applications in fracture mechanics, composite materials, tribology and numerical methods. Thus, significant attention is given to crack and contact problems, problems involving interfaces between dissimilar media, thermoelasticity, singular asymptotic stress fields and three-dimensional problems. Problems suitable for class use are included at the end of most of the chapters. These are expressed wherever possible in the form they would arise in engineering - i.e. as a body of a given geometry subjected to prescribed loading - instead of inviting the student to verify' that a given candidate stress function is appropriate to the problem. The text is therefore written in such a way as to enable the student to approach such problems deductively. A solutions manual is available directly from the author (e-mail: [email protected]).
The Pennsylvania State College Bulletin, Volume 27, Number 25, June 22, 1933. Engineering Experiment Station, Bulletin No. 42.
|
You may like...
Graphene and Its Derivatives - Synthesis…
Ishaq Ahmad, Fabian I. Ezema
Hardcover
|