Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
For several decades since its inception, Einstein's general theory of relativity stood somewhat aloof from the rest of physics. Paradoxically, the attributes which normally boost a physical theory - namely, its perfection as a theoreti cal framework and the extraordinary intellectual achievement underlying i- prevented the general theory from being assimilated in the mainstream of physics. It was as if theoreticians hesitated to tamper with something that is manifestly so beautiful. Happily, two developments in the 1970s have narrowed the gap. In 1974 Stephen Hawking arrived at the remarkable result that black holes radiate after all. And in the second half of the decade, particle physicists discovered that the only scenario for applying their grand unified theories was offered by the very early phase in the history of the Big Bang universe. In both cases, it was necessary to discuss the ideas of quantum field theory in the background of curved spacetime that is basic to general relativity. This is, however, only half the total story. If gravity is to be brought into the general fold of theoretical physics we have to know how to quantize it. To date this has proved a formidable task although most physicists would agree that, as in the case of grand unified theories, quantum gravity will have applications to cosmology, in the very early stages of the Big Bang universe. In fact, the present picture of the Big Bang universe necessarily forces us to think of quantum cosmology."
This volume contains papers presented at an international
conference to celebrate Fred Hoyle's monumental contributions to
astronomy, astrophysics and astrobiology and more generally to
humanity and culture. The contributed articles highlight the
important aspects of his scientific life and show how much of an
example and inspiration he has been for over three generations in
the 20th century.
For several decades since its inception, Einstein's general theory of relativity stood somewhat aloof from the rest of physics. Paradoxically, the attributes which normally boost a physical theory - namely, its perfection as a theoreti cal framework and the extraordinary intellectual achievement underlying i- prevented the general theory from being assimilated in the mainstream of physics. It was as if theoreticians hesitated to tamper with something that is manifestly so beautiful. Happily, two developments in the 1970s have narrowed the gap. In 1974 Stephen Hawking arrived at the remarkable result that black holes radiate after all. And in the second half of the decade, particle physicists discovered that the only scenario for applying their grand unified theories was offered by the very early phase in the history of the Big Bang universe. In both cases, it was necessary to discuss the ideas of quantum field theory in the background of curved spacetime that is basic to general relativity. This is, however, only half the total story. If gravity is to be brought into the general fold of theoretical physics we have to know how to quantize it. To date this has proved a formidable task although most physicists would agree that, as in the case of grand unified theories, quantum gravity will have applications to cosmology, in the very early stages of the Big Bang universe. In fact, the present picture of the Big Bang universe necessarily forces us to think of quantum cosmology.
This volume contains papers presented at an international
conference to celebrate Fred Hoyle's monumental contributions to
astronomy, astrophysics and astrobiology and more generally to
humanity and culture. The contributed articles highlight the
important aspects of his scientific life and show how much of an
example and inspiration he has been for over three generations in
the 20th century.
The third edition of this successful textbook is fully updated and includes important recent developments in cosmology. It begins with an introduction to cosmology and general relativity, and goes on to cover the mathematical models of standard cosmology. The physical aspects of cosmology, including primordial nucleosynthesis, the astroparticle physics of inflation, and the current ideas on structure formation are discussed. Alternative models of cosmology are reviewed, including the model of Quasi-Steady State Cosmology, which has recently been proposed as an alternative to Big Bang Cosmology.
The astronomical community is wrongly interpreting cosmological data by using the standard Big Bang Model. In this highly controversial volume, three distinguished cosmologists argue this premise with persuasion and conviction. Starting with the beginnings of modern cosmology, they conduct a deep and wide review of the observations made from 1945 to the present, explaining what they regard as the defects and inconsistencies that exist within the interpretation of cosmological data. This is followed by an extensive presentation of the authors' own alternative view of the status of observations and how they should be explained. Along the way, the book touches on the most fundamental questions, including the origin, age, structure, and properties of the Universe. Writing from the heart, with passion and punch, Hoyle, Burbidge, and Narlikar, make a powerful case for viewing the universe in a different light, which will be of great interest to graduate students, researchers, and professionals in astronomy, cosmology, and physics.
|
You may like...
Revealing Revelation - How God's Plans…
Amir Tsarfati, Rick Yohn
Paperback
(5)
|