Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
The Conference on Algebraic Geometry, held in Berlin 9-15 March 1988, was organised by the Sektion Mathematik of the Humboldt-Universitat. The organising committee consisted of H. Kurke, W. Kleinert, G. Pfister and M. Roczen. The Conference is one in a series organised by the Humboldt-Universitat at regular intervals of two or three years, with the purpose of providing a meeting place for mathematicians from eastern and western countries. The present volume contains elaborations of part of the lectures presented at the Conference and some articles on related subjects. All papers were subject to the regular refereeing procedure of Compositio Mathematica, and H. Kurke acted as a guest editor of this journal. The papers focus on actual themes in algebraic geometry and singularity theory, such as vector bundles, arithmetical algebraic geometry, intersection theory, moduli and Hodge theory. We are grateful to all those who, by their hospitality, their presence at the Con ference, their support or their written contributions, have made this Conference to a success. The editors Compositio Mathematica 76: viii, 1990."
Arithmetic algebraic geometry is in a fascinating stage of growth, providing a rich variety of applications of new tools to both old and new problems. Representative of these recent developments is the notion of Arakelov geometry, a way of "completing" a variety over the ring of integers of a number field by adding fibres over the Archimedean places. Another is the appearance of the relations between arithmetic geometry and Nevanlinna theory, or more precisely between diophantine approximation theory and the value distribution theory of holomorphic maps. Research mathematicians and graduate students in algebraic geometry and number theory will find a valuable and lively view of the field in this state-of-the-art selection.
The Conference on Algebraic Geometry, held in Berlin 9-15 March 1988, was organised by the Sektion Mathematik of the Humboldt-Universitat. The organising committee consisted of H. Kurke, W. Kleinert, G. Pfister and M. Roczen. The Conference is one in a series organised by the Humboldt-Universitat at regular intervals of two or three years, with the purpose of providing a meeting place for mathematicians from eastern and western countries. The present volume contains elaborations of part of the lectures presented at the Conference and some articles on related subjects. All papers were subject to the regular refereeing procedure of Compositio Mathematica, and H. Kurke acted as a guest editor of this journal. The papers focus on actual themes in algebraic geometry and singularity theory, such as vector bundles, arithmetical algebraic geometry, intersection theory, moduli and Hodge theory. We are grateful to all those who, by their hospitality, their presence at the Con ference, their support or their written contributions, have made this Conference to a success. The editors Compositio Mathematica 76: viii, 1990.
Arithmetic algebraic geometry is in a fascinating stage of growth, providing a rich variety of applications of new tools to both old and new problems. Representative of these recent developments is the notion of Arakelov geometry, a way of "completing" a variety over the ring of integers of a number field by adding fibres over the Archimedean places. Another is the appearance of the relations between arithmetic geometry and Nevanlinna theory, or more precisely between diophantine approximation theory and the value distribution theory of holomorphic maps. Research mathematicians and graduate students in algebraic geometry and number theory will find a valuable and lively view of the field in this state-of-the-art selection.
|
You may like...
|