![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
Showing 1 - 5 of 5 matches in All Departments
The physical processes which initiate and maintain motion have been a major concern of serious investigation throughout the evolution of scientific thought. As early as the fifth century B. C. questions regarding motion were presented as touchstones for the most fundamental concepts about existence. Such wide ranging philosophical issues are beyond the scope of this book, however, consider the paradox of the flying arrow attri buted to Zeno of Elea: An arrow is shot from point A to point B requiring a sequence of time instants to traverse the distance. Now, for any time instant, T, of the sequence the arrow is at a position, Pi' and at Ti+! the i arrow is at Pi+i> with Pi ::I-P+* Clearly, each Ti must be a singular time i 1 unit at which the arrow is at rest at Pi because if the arrow were moving during Ti there would be a further sequence, Til' of time instants required for the arrow to traverse the smaller distance. Now, regardless of the level to which this recursive argument is applied, one is left with the flight of the arrow comprising a sequence of positions at which the arrow is at rest. The original intent of presenting this paradox has been interpreted to be as an argument against the possibility of individuated objects moving in space.
This volume contains revised papers based on contributions to the NATO Advanced Research Workshop on Multisensor Fusion for Computer Vision, held in Grenoble, France, in June 1989. The 24 papers presented here cover a broad range of topics, including the principles and issues in multisensor fusion, information fusion for navigation, multisensor fusion for object recognition, network approaches to multisensor fusion, computer architectures for multi sensor fusion, and applications of multisensor fusion. The participants met in the beautiful surroundings of Mont Belledonne in Grenoble to discuss their current work in a setting conducive to interaction and the exchange of ideas. Each participant is a recognized leader in his or her area in the academic, governmental, or industrial research community. The workshop focused on techniques for the fusion or integration of sensor information to achieve the optimum interpretation of a scene. Several participants presented novel points of view on the integration of information. The 24 papers presented in this volume are based on those collected by the editor after the workshop, and reflect various aspects of our discussions. The papers are organized into five parts, as follows.
This book presents a unified view of image motion analysis under the variational framework. Variational methods, rooted in physics and mechanics, but appearing in many other domains, such as statistics, control, and computer vision, address a problem from an optimization standpoint, i.e., they formulate it as the optimization of an objective function or functional. The methods of image motion analysis described in this book use the calculus of variations to minimize (or maximize) an objective functional which transcribes all of the constraints that characterize the desired motion variables. The book addresses the four core subjects of motion analysis: Motion estimation, detection, tracking, and three-dimensional interpretation. Each topic is covered in a dedicated chapter. The presentation is prefaced by an introductory chapter which discusses the purpose of motion analysis. Further, a chapter is included which gives the basic tools and formulae related to curvature, Euler Lagrange equations, unconstrained descent optimization, and level sets, that the variational image motion processing methods use repeatedly in the book.
This book presents a unified view of image motion analysis under the variational framework. Variational methods, rooted in physics and mechanics, but appearing in many other domains, such as statistics, control, and computer vision, address a problem from an optimization standpoint, i.e., they formulate it as the optimization of an objective function or functional. The methods of image motion analysis described in this book use the calculus of variations to minimize (or maximize) an objective functional which transcribes all of the constraints that characterize the desired motion variables. The book addresses the four core subjects of motion analysis: Motion estimation, detection, tracking, and three-dimensional interpretation. Each topic is covered in a dedicated chapter. The presentation is prefaced by an introductory chapter which discusses the purpose of motion analysis. Further, a chapter is included which gives the basic tools and formulae related to curvature, Euler Lagrange equations, unconstrained descent optimization, and level sets, that the variational image motion processing methods use repeatedly in the book.
This volume contains revised papers based on contributions to the NATO Advanced Research Workshop on Multisensor Fusion for Computer Vision, held in Grenoble, France, in June 1989. The 24 papers presented here cover a broad range of topics, including the principles and issues in multisensor fusion, information fusion for navigation, multisensor fusion for object recognition, network approaches to multisensor fusion, computer architectures for multi sensor fusion, and applications of multisensor fusion. The participants met in the beautiful surroundings of Mont Belledonne in Grenoble to discuss their current work in a setting conducive to interaction and the exchange of ideas. Each participant is a recognized leader in his or her area in the academic, governmental, or industrial research community. The workshop focused on techniques for the fusion or integration of sensor information to achieve the optimum interpretation of a scene. Several participants presented novel points of view on the integration of information. The 24 papers presented in this volume are based on those collected by the editor after the workshop, and reflect various aspects of our discussions. The papers are organized into five parts, as follows.
|
You may like...
U.S. Army Guerrilla Warfare Handbook
Department of the Army
Paperback
Rights To Land - A Guide To Tenure…
William Beinart, Peter Delius, …
Paperback
(1)R298 Discovery Miles 2 980
|