Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 2 of 2 matches in All Departments
In 1983 O.J. Boxma and the author have published a research monograph on Boundary Value Problems in Queueing System Analysis. The continuation of that research is described in the present monograph. The technique developed in the 1983-monograph has appeared to be quite powerful in the construction of explicit expressions for the generating functions and/or Laplace-Stieltjes transforms of characteristic distributions needed in the performance evaluation of stoachistic models stemming from computer system and telecommunication engineering. The book covers the following topics: One- Dimensional Random Walks; Two-Dimensional Random Walks; the Two-Dimensional Workload Process; and the N-Dimensional Random Walk.
I. The single server queue GIIG/1 1 1. 1 Definitions 1 1. 2 Regenerative processes 2 1. 3 The sequence n 1,2, . . . 4 = !::!n' 1. 4 The process t dO,co)} 11 {~t' The process t dO,co)} 1. 5 15 {~t' Applications to the GIIG/1 queue 1. 6 16 The average virtual waiting time during a busy 17 cycle ii. Little's formula 17 iii. The relation between the stationary distributions 18 of the virtual and actual waiting time iv. The relation between the distribution of the idle 20 period and the stationary distribution of the actual waiting time v. The limiting distribution of the residual service 24 time GBP. , -pw vi. The relation for ~ rn E{e -n} 25 n=O 1. 7 Some notes on chapter I 27 II. The M/G/K system 31 2. 1 On the stationary distribution of the actual and virtua131 waiting time for the M/G/K queueing system 2. 2 The M/G/K loss system 36 2. 3 Proof of Erlang's formula for the M/G/K loss system 43 i. Proof for the system MIMI'" 45 ii. Proof for the system M/G/co 47 VI iii. Proof fol' the MIG IK los s system III. The M/G/1 system 3. 1 Introduction 71 (K) 3. 2 Downcrossings of the ~t -process 74 3. 3 The distribution of the supremum of the virtual waiting 75 * (00) d' b 1 tlme ~t urlng a usy cyc e i. The exit probability 76 ii.
|
You may like...
|