0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Atomic Properties in Hot Plasmas - From Levels to Superconfigurations (Paperback, Softcover reprint of the original 1st ed.... Atomic Properties in Hot Plasmas - From Levels to Superconfigurations (Paperback, Softcover reprint of the original 1st ed. 2015)
Jacques Bauche, Claire Bauche-Arnoult, Olivier Peyrusse
R4,128 Discovery Miles 41 280 Ships in 10 - 15 working days

This book is devoted to the calculation of hot-plasma properties which generally requires a huge number of atomic data. It is the first book that combines information on the details of the basic atomic physics and its application to atomic spectroscopy with the use of the relevant statistical approaches. Information like energy levels, radiative rates, collisional and radiative cross-sections, etc., must be included in equilibrium or non-equilibrium models in order to describe both the atomic-population kinetics and the radiative properties. From the very large number of levels and transitions involved in complex ions, some statistical (global) properties emerge. The book presents a coherent set of concepts and compact formulas suitable for tractable and accurate calculations. The topics addressed are: radiative emission and absorption, and a dozen of other collisional and radiative processes; transition arrays between level ensembles (configurations, superconfigurations); effective temperatures of configurations, superconfigurations, and ions; charge-state distributions; radiative power losses and opacity. There are many numerical examples and comparisons with experiment presented throughout the book. The plasma properties described in this book are especially relevant to large nuclear fusion facilities such as the NIF (California) and the ITER (France), and to astrophysics. Methods relevant to the central-field configurational model are described in detail in the appendices: tensor-operator techniques, second-quantization formalism, statistical distribution moments, and the algebra of partition functions. Some extra tools are propensity laws, correlations, and fractals. These methods are applied to the analytical derivation of many properties, specially the global ones, through which the complexity is much reduced. The book is intended for graduate-level students, and for physicists working in the field.

Atomic Properties in Hot Plasmas - From Levels to Superconfigurations (Hardcover, 1st ed. 2015): Jacques Bauche, Claire... Atomic Properties in Hot Plasmas - From Levels to Superconfigurations (Hardcover, 1st ed. 2015)
Jacques Bauche, Claire Bauche-Arnoult, Olivier Peyrusse
R4,379 Discovery Miles 43 790 Ships in 10 - 15 working days

This book is devoted to the calculation of hot-plasma properties which generally requires a huge number of atomic data. It is the first book that combines information on the details of the basic atomic physics and its application to atomic spectroscopy with the use of the relevant statistical approaches. Information like energy levels, radiative rates, collisional and radiative cross-sections, etc., must be included in equilibrium or non-equilibrium models in order to describe both the atomic-population kinetics and the radiative properties. From the very large number of levels and transitions involved in complex ions, some statistical (global) properties emerge. The book presents a coherent set of concepts and compact formulas suitable for tractable and accurate calculations. The topics addressed are: radiative emission and absorption, and a dozen of other collisional and radiative processes; transition arrays between level ensembles (configurations, superconfigurations); effective temperatures of configurations, superconfigurations, and ions; charge-state distributions; radiative power losses and opacity. There are many numerical examples and comparisons with experiment presented throughout the book. The plasma properties described in this book are especially relevant to large nuclear fusion facilities such as the NIF (California) and the ITER (France), and to astrophysics. Methods relevant to the central-field configurational model are described in detail in the appendices: tensor-operator techniques, second-quantization formalism, statistical distribution moments, and the algebra of partition functions. Some extra tools are propensity laws, correlations, and fractals. These methods are applied to the analytical derivation of many properties, specially the global ones, through which the complexity is much reduced. The book is intended for graduate-level students, and for physicists working in the field.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Mountain Backgammon - The Classic Game…
Lily Dyu R575 R460 Discovery Miles 4 600
Cadac Mantles (300 CP D/T) (3 / Blister…
R110 Discovery Miles 1 100
Alva 5-Piece Roll-Up BBQ/ Braai Tool Set
R389 R346 Discovery Miles 3 460
Rhodes And His Banker - Empire, Wealth…
Richard Steyn Paperback R330 R220 Discovery Miles 2 200
Bostik Super Clear Tape on Dispenser…
R44 Discovery Miles 440
Sony PULSE Explore Wireless Earbuds
R4,999 R4,749 Discovery Miles 47 490
Aerolatte Cappuccino Art Stencils (Set…
R110 R95 Discovery Miles 950
Shield Fresh 24 Gel Air Freshener…
R31 Discovery Miles 310
Peptine Pro Equine Hydrolysed Collagen…
 (2)
R359 R279 Discovery Miles 2 790
Alva 3-Panel Infrared Radiant Indoor Gas…
R1,499 R1,199 Discovery Miles 11 990

 

Partners