Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 15 of 15 matches in All Departments
Modern society depends critically on computers that control and manage the systems on which we depend in many aspects of our daily lives. While this provides conveniences of a level unimaginable just a few years ago, it also leaves us vulnerable to attacks on the computers managing these systems. In recent times the explosion in cyber attacks, including viruses, worms, and intrusions, has turned this vulnerability into a clear and visible threat. Due to the escalating number and increased sophistication of cyber attacks, it has become important to develop a broad range of techniques, which can ensure that the information infrastructure continues to operate smoothly, even in the presence of dire and continuous threats. This book brings together the latest techniques for managing cyber threats, developed by some of the world s leading experts in the area. The book includes broad surveys on a number of topics, as well as specific techniques. It provides an excellent reference point for researchers and practitioners in the government, academic, and industrial communities who want to understand the issues and challenges in this area of growing worldwide importance."
There is a growing body of literature that focuses on the similarities and differences between how people behave in the offline world vs. how they behave in these virtual environments. Data mining has aided in discovering interesting insights with respect to how people behave in these virtual environments. The book addresses prediction, mining and analysis of offline characteristics and behaviors from online data and vice versa. Each chapter will focus on a different aspect of virtual worlds to real world prediction e.g., demographics, personality, location, etc.
This book constitutes the refereed proceedings of the 6th International Conference on Big Data analytics, BDA 2018, held in Warangal, India, in December 2018. The 29 papers presented in this volume were carefully reviewed and selected from 93 submissions. The papers are organized in topical sections named: big data analytics: vision and perspectives; financial data analytics and data streams; web and social media data; big data systems and frameworks; predictive analytics in healthcare and agricultural domains; and machine learning and pattern mining.
There is a growing body of literature that focuses on the similarities and differences between how people behave in the offline world vs. how they behave in these virtual environments. Data mining has aided in discovering interesting insights with respect to how people behave in these virtual environments. The book addresses prediction, mining and analysis of offline characteristics and behaviors from online data and vice versa. Each chapter will focus on a different aspect of virtual worlds to real world prediction e.g., demographics, personality, location, etc.
This book constitutes the thoroughly refereed proceedings of the International Workshops on Behavior and Social Informatics and Computing, BSIC 2013, held as collocated event of IJCAI 2013, in Beijing, China in August 2013 and the International Workshop on Behavior and Social Informatics, BSI 2013, held as satellite workshop of PAKDD 2013, in Gold Coast, Australia, in April 2013. The 23 papers presented were carefully reviewed and selected from 58 submissions. The papers study a wide range of techniques and methods for behavior/social-oriented analyses including behavioral and social interaction and network, behavioral/social patterns, behavioral/social impacts, the formation of behavioral/social-oriented groups and collective intelligence and behavioral/social intelligence emergence.
The two-volume set LNAI 6634 and 6635 constitutes the refereed proceedings of the 15th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2011, held in Shenzhen, China in May 2011. The total of 32 revised full papers and 58 revised short papers were carefully reviewed and selected from 331 submissions. The papers present new ideas, original research results, and practical development experiences from all KDD-related areas including data mining, machine learning, artificial intelligence and pattern recognition, data warehousing and databases, statistics, knowledge engineering, behavior sciences, visualization, and emerging areas such as social network analysis.
The two-volume set LNAI 6634 and 6635 constitutes the refereed proceedings of the 15th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2011, held in Shenzhen, China in May 2011. The total of 32 revised full papers and 58 revised short papers were carefully reviewed and selected from 331 submissions. The papers present new ideas, original research results, and practical development experiences from all KDD-related areas including data mining, machine learning, artificial intelligence and pattern recognition, data warehousing and databases, statistics, knowledge engineering, behavior sciences, visualization, and emerging areas such as social network analysis.
Modern society depends critically on computers that control and manage the systems on which we depend in many aspects of our daily lives. While this provides conveniences of a level unimaginable just a few years ago, it also leaves us vulnerable to attacks on the computers managing these systems. In recent times the explosion in cyber attacks, including viruses, worms, and intrusions, has turned this vulnerability into a clear and visible threat. Due to the escalating number and increased sophistication of cyber attacks, it has become important to develop a broad range of techniques, which can ensure that the information infrastructure continues to operate smoothly, even in the presence of dire and continuous threats. This book brings together the latest techniques for managing cyber threats, developed by some of the world's leading experts in the area. The book includes broad surveys on a number of topics, as well as specific techniques. It provides an excellent reference point for researchers and practitioners in the government, academic, and industrial communities who want to understand the issues and challenges in this area of growing worldwide importance.
Thisyear'svolumeofAdvancesinWebMiningandWebUsageAnalysiscontains thepostworkshopproceedingsofajointevent,the9thInternationalWorkshopon Knowledge Discovery from the Web (WEBKDD 2007) and the First SNA-KDD Workshop on Social Network Analysis (SNA-KDD 2007). The joint workshop on Web Mining and Social Network Analysis took place at the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD). It attracted 23 submissions, of which 14 were accepted for presentation at the workshop. Eight of them have been extended for inclusion in this volume. WEBKDD is one of the most traditional workshops of the ACM SIGKDD internationalconference, under the auspices of which it has been organizedsince 1999. The strong interest for knowledge discovery in the Web, fostered not least by WEBKDD itself, has led to solutions for many problems in the Web's p- mature era. In the meanwhile, the Web has stepped into a new era, where it is experienced as a social medium, fostering interaction among people, enabling and promoting the sharing of knowledge, experiences and applications, char- terized by group activities, community formation, and evolution. The design of Web 2. 0 re?ects the socialcharacterof the Web, bringing new potential and new challenges. The 9th WEBKDD was devoted to the challenges and opportunities of mining for the social Web and promptly gave rise to the joint event with the First Workshop on Social Network Analysis (SNA-KDD). Social network research has advanced signi?cantly in the last few years, strongly motivated by the prevalence of online social websites and a variety of large-scale o?ine social network systems.
This book constitutes the thoroughly refereed post-proceedings of the 8th International Workshop on Mining Web Data, WEBKDD 2006, held in Philadelphia, PA, USA in August 2006 in conjunction with the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2006. The 13 revised full papers presented together with a detailed preface went through two rounds of reviewing and improvement and were carefully selected for inclusion in the book. The enhanced papers show new technologies from areas like adaptive mining methods, stream mining algorithms, techniques for the Grid, especially flat texts, documents, pictures and streams, usability, e-commerce applications, personalization, and recommendation engines.
1 WorkshopTheme Data mining as a discipline aims to relate the analysis of large amounts of user data to shed light on key business questions. Web usage mining in particular, a relatively young discipline, investigates methodologies and techniques that - dress the unique challenges of discovering insights from Web usage data, aiming toevaluateWebusability, understandtheinterestsandexpectationsofusersand assess the e?ectiveness of content delivery. The maturing and expanding Web presents a key driving force in the rapid growth of electronic commerce and a new channel for content providers. Customized o?ers and content, made possible by discovered knowledge about the customer, are fundamental for the establi- ment of viable e-commerce solutions and sustained and e?ective content delivery in noncommercial domains. Rich Web logs provide companies with data about their online visitors and prospective customers, allowing microsegmentation and personalized interactions. While Web mining as a domain is several years old, the challenges that characterize data analysis in this area continue to be formidable. Though p- processing data routinely takes up a major part of the e?ort in data mining, Web usage data presents further challenges based on the di?culties of assigning data streams to unique users and tracking them over time. New innovations are required to reliably reconstruct sessions, to ascertain similarity and di?erences between sessions, and to be able to segment online users into relevant groups
This book constitutes the thoroughly refereed post-proceedings of the Third International Workshop on Mining Web Data, WEBKDD 2001 held in San Francisco, CA, USA in August 2001.The seven revised full papers went through two rounds of reviewing an improvement. The book addresses key issues in mining Web log data for e-commerce. The papers are devoted to predicting user access, recommender systems and access modeling, and acquiring and modeling data and patterns.
The 3-volume set LNAI 12712-12714 constitutes the proceedings of the 25th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, PAKDD 2021, which was held during May 11-14, 2021.The 157 papers included in the proceedings were carefully reviewed and selected from a total of 628 submissions. They were organized in topical sections as follows: Part I: Applications of knowledge discovery and data mining of specialized data; Part II: Classical data mining; data mining theory and principles; recommender systems; and text analytics; Part III: Representation learning and embedding, and learning from data.
The 3-volume set LNAI 12712-12714 constitutes the proceedings of the 25th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, PAKDD 2021, which was held during May 11-14, 2021.The 157 papers included in the proceedings were carefully reviewed and selected from a total of 628 submissions. They were organized in topical sections as follows: Part I: Applications of knowledge discovery and data mining of specialized data; Part II: Classical data mining; data mining theory and principles; recommender systems; and text analytics; Part III: Representation learning and embedding, and learning from data.
The 3-volume set LNAI 12712-12714 constitutes the proceedings of the 25th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, PAKDD 2021, which was held during May 11-14, 2021.The 157 papers included in the proceedings were carefully reviewed and selected from a total of 628 submissions. They were organized in topical sections as follows: Part I: Applications of knowledge discovery and data mining of specialized data; Part II: Classical data mining; data mining theory and principles; recommender systems; and text analytics; Part III: Representation learning and embedding, and learning from data.
|
You may like...
|