![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
Showing 1 - 25 of 56 matches in All Departments
Biomass Processes and Chemicals is written to assist the reader in understanding the options available for the production of chemicals from biomass. Petroleum-based and natural gas-based chemicals are well-established products that have served industry and consumers for more than one hundred years. However, time is running out and natural gas and petroleum are now being depleted. Thus, the need for alternative technologies to produce chemicals is necessary. Chemicals produced from sources are now coming into place for the establishment of a chemicals-from-biomass industry, hence this book covers these advancements.
The Refinery of the Future, Second Edition, delivers useful knowledge that will help the engineer understand the processes involved, feedstocks, composition and future technologies. Covering the basic chemistry, commercial processes already in use and future innovation, this reference gives engineers and managers the tools needed to understand refining products, feedstocks, and the processes critical to convert feedstocks to desired outcomes. New information concerning tight shale formations and heavy oil process options is included for today's operations. Rounding out with future uses in shale, bioliquids and refinery configurations, this book gives engineers and refinery managers the knowledge to update and upgrade their refinery assets.
Natural Gas: A Basic Handbook, Second Edition provides the reader with a quick and accessible introduction to a fuel source/industry that is transforming the energy sector. Written at an introductory level, but still appropriate for engineers and other technical readers, this book provides an overview of natural gas as a fuel source, including its origins, properties and composition. Discussions include the production of natural gas from traditional and unconventional sources, the downstream aspects of the natural gas industry. including processing, storage, and transportation, and environmental issues and emission controls strategies. This book presents an ideal resource on the topic for engineers new to natural gas, for advisors and consultants in the natural gas industry, and for technical readers interested in learning more about this clean burning fuel source and how it is shaping the energy industry.
Reaction Mechanisms in Environmental Engineering: Analysis and Prediction describes the principles that govern chemical reactivity and demonstrates how these principles are used to yield more accurate predictions. The book will help users increase accuracy in analyzing and predicting the speed of pollutant conversion in engineered systems, such as water and wastewater treatment plants, or in natural systems, such as lakes and aquifers receiving industrial pollution. Using examples from air, water and soil, the book begins with a clear exposition of the properties of environmental and inorganic organic chemicals that is followed by partitioning and sorption processes and sorption and transformation processes. Kinetic principles are used to calculate or estimate the pollutants' half-lives, while physical-chemical properties of organic pollutants are used to estimate transformation mechanisms and rates. The book emphasizes how to develop an understanding of how physico-chemical and structural properties relate to transformations of organic pollutants.
Key Features: Describes feedstock evaluation and the effects of elemental, chemical and fractional composition. Details reactor types and bed types. Explores the process options and parameters involved. Assesses coke formation and additives. Considers next generation processes and developments.
Natural gas and crude oil production from hydrocarbon rich deep shale formations is one of the most quickly expanding trends in domestic oil and gas exploration. Vast new natural gas and oil resources are being discovered every year across North America and one of those new resources comes from the development of deep shale formations, typically located many thousands of feet below the surface of the Earth in tight, low permeability formations. Deep Shale Oil and Gas provides an introduction to shale gas resources as well as offer a basic understanding of the geomechanical properties of shale, the need for hydraulic fracturing, and an indication of shale gas processing. The book also examines the issues regarding the nature of shale gas development, the potential environmental impacts, and the ability of the current regulatory structure to deal with these issues. Deep Shale Oil and Gas delivers a useful reference that today's petroleum and natural gas engineer can use to make informed decisions about meeting and managing the challenges they may face in the development of these resources.
Introduction to Enhanced Recovery Methods for Heavy Oil and Tar Sands, Second Edition, explores the importance of enhanced oil recovery (EOR) and how it has grown in recent years thanks to the increased need to locate unconventional resources such as heavy oil and shale. Unfortunately, petroleum engineers and managers aren't always well-versed in the enhancement methods that are available when needed or the most economically viable solution to maximize their reservoir's productivity. This revised new edition presents all the current methods of recovery available, including the pros and cons of each. Expanded and updated as a great preliminary text for the newcomer to the industry or subject matter, this must-have EOR guide teaches all the basics needed, including all thermal and non-thermal methods, along with discussions of viscosity, sampling, and the technologies surrounding offshore applications.
Fouling in Refineries is an important and ongoing problem that directly affects energy efficiency resulting in increased costs, production losses, and even unit shutdown, requiring costly expenditures to clean up equipment and return capacity to positive levels. This text addresses this common challenge for the hydrocarbon processing community within each unit of the refinery. As refineries today face a greater challenge of accepting harder to process heavier crudes and the ongoing flow of the lighter shale oil feedstocks, resulting in bigger challenges to balance product stability within their process equipment, this text seeks to inform all relative refinery personnel on how to monitor fouling, characterize the deposits, and follow all available treatments. With basic modeling and chemistry of fouling and each unit covered, users will learn how to operate at maximum production rates and elongate the efficiency of their refinery's capacity.
Unconventional reservoirs of oil and gas represent a huge additional global source of fossil fuels. However, there is much still to be done to improve techniques for their processing to make recovery and refining of these particular energy sources more cost-effective. Brief but readable, "Heavy and Extra-heavy Oil Upgrading Technologies" provide readers with a strategy for future production (the up-stream) and upgrading (the down-stream). The book provides the reader with an understandable overview of the chemistry and engineering behind the latest developments and technologies in the industry as well as the various environmental regulations. Clear and rigorous, "Heavy and Extra-heavy Oil Upgrading
Technologies" will prove tool for those scientists and engineers
already engaged in fossil fuel science and technology as well as
scientists, non-scientists, engineers, and non-engineers who wish
to gain a general overview or update of the science and technology
of unconventional fossil fuels in general and upgrading
technologies in particular. The use of microorganisms and a number
of physical methods, such as ultrasound, median microwave, cold
plasma, electrokinetic and monocrystalline intermetallics, etc.,
will be discussed for the first time.
The extraction of natural gas from shale formations is no simple
task and perhaps the
Shale Oil represents a huge additional global fossil fuel
resource. However, extracting oil from the shale is no simple task;
much still needs to be understood to make the process more
cost-effective to increase economic flow rates. Clear and rigorous,
Oil Shale Production Process will prove useful for those scientists
and engineers already engaged in fossil fuel science and technology
as well as scientists, non-scientists, engineers, and non-engineers
who wish to gain a general overview or update of the science and
technology of fossil fuels. Not only does the book discuss the
production processes but also provides methods which should reduce
environmental footprint by properly addressing: surface mining and
extraction processes, in situ conversion process and
hydrotreatment. Methods which should reduce environmental footprint Easy-to-read understand overview of the chemistry, engineering, and technology of shale oil "
Written by an author with over 38 years of experience in the
chemical and petrochemical process industry, this handbook will
present an analysis of the process steps used to produce industrial
hydrocarbons from various raw materials. It is the first book to
offer a thorough analysis of external factors effecting production
such as: cost, availability and environmental legislation.
Asphalt is a complex but popular civil engineering material. Design engineers must understand these complexities in order to optimize its use. Whether or not it is used to pave a busy highway, waterproof a rooftop or smooth out an airport runway, Asphalt Materials Science and Technology acquaints engineers with the issues and technologies surrounding the proper selection and uses of asphalts. With this book in hand, researchers and engineering will find a valuable guide to the production, use and environmental aspect of asphalt.
Many oil refineries employ hydroprocessing for removing sulfur and other impurities from petroleum feedstocks. Capable of handling heavier feedstocks than other refining techniques, hydroprocessing enables refineries to produce higher quality products from unconventional - and formerly wasted - sources. Hydroprocessing of Heavy Oils and Residua illustrates how to obtain maximum yields of high-value products from heavy oils and residue using hydroprocessing technologies. While most resources on hydroprocessing concentrate ongas oil and lower boiling products, this book details the chemistry involved and the process modifications required for the hydroprocessing of heavy crude oils and residua. Emphasizing the use of effective catalysts to ensure cleaner and more efficient industrial fuel processes, the book presents key principles of heterogeneous catalyst preparation, catalyst loading, and reactor systems. It explains how to evaluate and account for catalysts, reactor type, process variables, feedstock type, and feedstock composition in the design of hydroprocessing operations. The text concludes with examples of commercial processes and discusses methods of hydrogen production. To meet the growing demand for transportation fuels and fuel oil, modern oil refineries must find ways to produce high quality fuel products from increasingly heavy feedstocks. Hydroprocessing of Heavy Oils and Residua contains the fundamental concepts, technologies, and process modifications refineries need to adapt current hydroprocessing technologies for processing heavier feedstocks.
This work highlights contemporary approaches to resource utilization and provides comprehensive coverage of technological advances in residuum conversion. It illustrates state-of-the-art engineering methods for the refinement of heavy oils, bitumen, and other high-sulphur feedstocks.
The petrochemical industry is a scientific and engineering field that encompasses the production of a wide range of chemicals and polymers. The purpose of this book is not only to provide a follow-on to form the later chapters of the highly successful Chemistry and Technology of Petroleum 5th Edition but also provides a simplified approach to a very diverse chemical subject dealing with the chemistry and technology of various petroleum and petrochemical process. Following from the introductory chapters, this book provides the readers with a valuable source of information containing insights into petrochemical reactions and products, process technology, and polymer synthesis. Provides readers with a valuable source of information containing insights into petrochemical reactions and products, process technology, and polymer synthesis Introduces the reader to the various petrochemical intermediates are generally produced by chemical conversion of primary petrochemicals to form more complicated derivative products The reactions and processes involved in transforming petroleum-based hydrocarbons into the chemicals that form the basis of the multi-billion dollar petrochemical industry are reviewed and described The book includes information on new process developments for the production of raw materials and intermediates for petrochemicals Includes a description of the origin of the raw materials for the petrochemicals industry - including an overview of the coal chemicals industry
An industry expert details the differences in solvent treating processes and the types of feedstock used for each. Relevant process data is provided, and process operations are fully described. This practical and accessible guide is written for managers, professionals and technicians as well as graduate students transitioning into the refining industry. Key Features: Describes feedstock evaluation and the effects of elemental, chemical and fractional composition. Details deasphalting and dewaxing approaches. Explores the process options and parameters involved in solvent processes. Considers next generation processes and developments.
Written by an industry expert with over fifty years of experience, this book details the various solvent processes that are used in crude oil refineries. Providing an in-depth exploration of the different types of processes, as well as the types of feedstocks that can be used with them, this book prepares readers for changes as the industry evolves. Key Features: Describes feedstock evaluation and the effects of elemental, chemical and fractional composition. Contains an extensive glossary of all related concepts in hydrotreating and hydrocracking processes Considers next generation processes and developments. This book is an essential guide for engineers, scientists and students in the field of petroleum processing and refining technology, including professionals, technicians, management personnel and academics.
Shale Oil and Gas Production Processes delivers the basics on current production technologies and the processing and refining of shale oil. Starting with the potential of formations and then proceeding to production and completion, this foundational resource also dives into the chemical and physical nature of the precursor of oil shale, kerogen, to help users understand and optimize its properties in shale. Rounding out with reporting, in situ retorting, refining and environmental aspects, this book gives engineers and managers a strong starting point on how to manage the challenges and processes necessary for the further development of these complex resources.
Key Features: Describes feedstock evaluation and the effects of elemental, chemical and fractional composition. Details reactor types and bed types. Explores the process options and parameters involved. Assesses coke formation and additives. Considers next generation processes and developments.
Natural Water Remediation: Chemistry and Technology considers topics such as metal ion solubility controls, pH, carbonate equilibria, adsorption reactions, redox reactions and the kinetics of oxygenation reactions that occur in natural water environments. The book begins with the fundamentals of acid-base and redox chemistry to provide a better understanding of the natural system. Other sections cover the relationships among environmental factors and natural water (including biochemical factors, hydrologic cycles and sources of solutes in the atmosphere). Chemical thermodynamic models, as applied to natural water, are then discussed in detail. Final sections cover self-contained applications concerning composition, quality measurement and analyses for river, lake, reservoir and groundwater sampling.
Heavy Oil Recovery and Upgrading covers properties, factors, methods and all current and upcoming processes, giving engineers, new and experienced, the full spectrum of recovery choices, including SAGD, horizontal well technology, and hybrid approaches. Moving on to the upgrading and refining of the product, the book also includes information on in situ upgrading, refining options, and hydrogen production. Rounding out with environmental effects, management methods on refinery waste, and the possible future configurations within the refinery, this book provides engineers with a single source to make decisions and manage the full range of challenges.
The prime focus of the book is to determine the mechanism, extent, and efficiency of biodegradation processes, as it is necessary to know the composition of the original crude oil or crude oil product. The technology of bioremediation and the concerns of whether or not bioremediation technologies can accelerate this natural process enough to be considered practical, and, if so, whether they might find a niche as replacements for, or adjuncts to, other crude oil-spill response technologies. This book also introduces the reader to the science of the composition of crude oil and crude oil products is at the core of understanding the chemistry of biodegradation and bioremediation processes.
Over the last several decades, the petroleum industry has experienced significant changes in resource availability, petro-politics, and technological advancements dictated by the changing quality of refinery feedstocks. However, the dependence on fossil fuels as the primary energy source has remained unchanged. Refinery Feedstocks addresses the problems of changing feedstock availability and properties; the refining process; and solids deposition during refining. This book will take the reader through the various steps that are necessary for crude oil evaluation and refining including the potential for the use of coal liquids, shale oil, and non-fossil fuel materials (biomass) as refinery feedstocks. Other features: Describes the various types of crude oil and includes a discussion of extra heavy oil and tar sand bitumen Includes basic properties and specifications of crude oil and the significance in refinery operations This book is a handy reference for engineers, scientists, and students who want an update on crude oil refining and on the direction the industry must take to assure the refinability of various feedstocks and the efficiency of the refining processes in the next fifty years. Non-technical readers, with help from the extensive glossary, will also benefit from reading this book. |
You may like...
|