|
Showing 1 - 16 of
16 matches in All Departments
Bibliograpby . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 325 Critical
point dominance in quantum field models . . . . . . . . . . . . . .
. . . . . . 326 lp, ' quantum fieId model in the single-phase
regioni: Differentiability of the mass and bounds on critical
exponents . . . . 341 Remark on the existence of lp: . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 On
the approach to the critical point . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 348 Critical exponents and elementary
partic1es . . . . . . . . . . . . . . . . . . . . . . . . . . 362 V
Particle Structure Introduction. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 371 Bibliography . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 The
entropy principle for vertex funetions in quantum fieId models . .
. . . 372 Three-partic1e structure of lp' interactions and the
sealing limit . . . . . . . . . 397 Two and three body equations in
quantum field models . . . . . . . . . . . . . . . 409 Partic1es
and scaling for lattice fields and Ising models . . . . . . . . . .
. . . . . . 437 The resununation of one particIe lines. . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 450 VI Bounds on
Coupling Constants Introduction. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 479 Bibliography . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
Absolute bounds on vertices and couplings . . . . . . . . . . . . .
. . . . . . . . . . . . . 480 The coupling constant in a lp' field
theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
VII Confinement and Instantons Introduction. . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 497 Bibliography . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
497 Instantons in a U(I) lattice gauge theory: A coulomb dipole gas
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 498 Charges, vortiees and confinement. . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 516 vi VIII
ReOectioD Positivity Introduction. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 531 Bibliography . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531 A
note on reflection positivity . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 532 vii Collected Papers -
Volume 1 Introduction. . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 5 I Infinite
Renormalization of the Hamiltonian Is Necessary 9 II Quantum Field
Theory Models: Parti. The ep;" Model 13 Introduction. . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 13 Fock space. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 17 Q space. . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
The Hamiltonian H(g). . . . . . . . . . . . . . . . . . . . . .
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 325 Critical
point dominance in quantum field models. . . . . . . . . . . . . .
. . . . . . 326 q>,' quantum field model in the single-phase
regions: Differentiability of the mass and bounds on critical
exponents. . . . 341 Remark on the existence of q>:. . . * . . .
. * . . . . * . . . . . . . . * . * . . . . . . . . . . * . 345 On
the approach to the critical point . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 348 Critical exponents and elementary
particles. . . . . . . . . . . . . . . . . . . . . . . . . . 362 V
Particle Structure Introduction. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 371 Bibliography . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 The
entropy principle for vertex functions in quantum field models. . .
. . 372 Three-particle structure of q>4 interactions and the
scaling limit . . . . . . . . . 397 Two and three body equations in
quantum field models. . . . . . . . . . . . . . . 409 Particles and
scaling for lattice fields and Ising models. . . . . . . . . . . .
. . . . 437 The resummation of one particle lines. . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 450 VI Bounds on
Coupling Constants Introduction. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 479 Bibliography . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
Absolute bounds on vertices and couplings. . . . . . . . . . . . .
. . . . . . . . . . . . . 480 The coupling constant in a q>4
field theory. . . . . . . . . . . . . . . . . . . . . . . . . . .
491 VII Confinement and Instantons Introduction. . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 497 Bibliography . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 497 Instantons in a U(I) lattice gauge theory: A coulomb dipole
gas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 498 Charges, vortices and confinement. . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 516 ix VIII
Reflection Positivity Introduction. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 531 Bibliography . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531 A
note on reflection positivity . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 532 x Introduction This volume
contains a selection of expository articles on quantum field theory
and statistical mechanics by James Glimm and Arthur Jaffe. They
include a solution of the original interacting quantum field
equations and a description of the physics which these equations
contain. Quantum fields were proposed in the late 1920s as the
natural framework which combines quantum theory with relativ ity.
They have survived ever since.
Bibliograpby . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 325 Critical
point dominance in quantum field models . . . . . . . . . . . . . .
. . . . . . 326 lp, ' quantum fieId model in the single-phase
regioni: Differentiability of the mass and bounds on critical
exponents . . . . 341 Remark on the existence of lp: . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 On
the approach to the critical point . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 348 Critical exponents and elementary
partic1es . . . . . . . . . . . . . . . . . . . . . . . . . . 362 V
Particle Structure Introduction. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 371 Bibliography . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 The
entropy principle for vertex funetions in quantum fieId models . .
. . . 372 Three-partic1e structure of lp' interactions and the
sealing limit . . . . . . . . . 397 Two and three body equations in
quantum field models . . . . . . . . . . . . . . . 409 Partic1es
and scaling for lattice fields and Ising models . . . . . . . . . .
. . . . . . 437 The resununation of one particIe lines. . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 450 VI Bounds on
Coupling Constants Introduction. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 479 Bibliography . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
Absolute bounds on vertices and couplings . . . . . . . . . . . . .
. . . . . . . . . . . . . 480 The coupling constant in a lp' field
theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
VII Confinement and Instantons Introduction. . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 497 Bibliography . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
497 Instantons in a U(I) lattice gauge theory: A coulomb dipole gas
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 498 Charges, vortiees and confinement. . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 516 vi VIII
ReOectioD Positivity Introduction. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 531 Bibliography . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531 A
note on reflection positivity . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 532 vii Collected Papers -
Volume 1 Introduction. . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 5 I Infinite
Renormalization of the Hamiltonian Is Necessary 9 II Quantum Field
Theory Models: Parti. The ep;" Model 13 Introduction. . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 13 Fock space. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 17 Q space. . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
The Hamiltonian H(g). . . . . . . . . . . . . . . . . . . . . .
This IMA Volume in Mathematics and its Applications
MULTIDIMENSIONAL HYPERBOLIC PROBLEMS AND COMPUTATIONS is based on
the proceedings of a workshop which was an integral part ofthe
1988-89 IMA program on NONLINEAR WAVES. We are grateful to the
Scientific Commit tee: James Glimm, Daniel Joseph, Barbara Keyfitz,
Andrew Majda, Alan Newell, Peter Olver, David Sattinger and David
Schaeffer for planning and implementing an exciting and stimulating
year-long program. We especially thank the Work shop Organizers,
Andrew Majda and James Glimm, for bringing together many of the
major figures in a variety of research fields connected with
multidimensional hyperbolic problems. A vner Friedman Willard
Miller PREFACE A primary goal of the IMA workshop on
Multidimensional Hyperbolic Problems and Computations from April
3-14, 1989 was to emphasize the interdisciplinary nature of
contemporary research in this field involving the combination of
ideas from the theory of nonlinear partial differential equations,
asymptotic methods, numerical computation, and experiments. The
twenty-six papers in this volume span a wide cross-section of this
research including some papers on the kinetic theory of gases and
vortex sheets for incompressible flow in addition to many papers on
systems of hyperbolic conservation laws. This volume includes
several papers on asymptotic methods such as nonlinear geometric
optics, a number of articles applying numerical algorithms such as
higher order Godunov methods and front tracking to physical
problems along with comparison to experimental data, and also
several interesting papers on the rigorous mathematical theory of
shock waves."
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 325 Critical
point dominance in quantum field models. . . . . . . . . . . . . .
. . . . . . 326 q>/ quantum field model in the single-phase
regions: Differentiability of the mass and bounds on critical
exponents. . . . 341 Remark on the existence of q>. ' . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
On the approach to the critical point . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 348 Critical exponents and
elementary particles. . . . . . . . . . . . . . . . . . . . . . . .
. . 362 V Particle Structure Introduction. . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 371 Bibliography . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
371 The entropy principle for vertex functions in quantum field
models . . . . . 372 Three-particle structure of q>4
interactions and the scaling limit . . . . . . . . . 397 Two and
three body equations in quantum field models . . . . . . . . . . .
. . . . 409 Particles and scaling for lattice fields and Ising
models. . . . . . . . . . . . . . . . 437 The resummation of one
particle lines. . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 450 VI Bounds on Coupling Constants Introduction. . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 479 Bibliography . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 479 Absolute bounds on vertices and couplings . . . . .
. . . . . . . . . . . . . . . . . . . . . 480 The coupling constant
in a q>4 field theory. . . . . . . . . . . . . . . . . . . . . .
. . . . . 491 VII Confinement and Instantons Introduction. . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 497 Bibliography . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 497 Instantons in a U(I) lattice gauge theory: A
coulomb dipole gas. . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 498 Charges, vortices and confinement.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
516 vi VIII Reflection Positivity Introduction. . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 531 Bibliography . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 531 A note on reflection positivity . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 532 vii Collected
Papers - Volume 1 Introduction. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 5 I Inimite
Reoormalization of the Hamiltonian Is Necessary 9 II Quantum Field
Theory Models: Part I. The cp~ Model 13 Introduction. . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 13 Fock space. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 17 Qspace. . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
The Hamiltonian H(g). . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 39 Removing the space
cutoff. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 50 Lorentz covariance and the Haag-Kastler
axioms. . . . . . . . . . . . . . . . . . . . . . 61 Part II. The
Yukawa Model 71 Preliminaries . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
72 First and second order estimates. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 86 Resolvent convergence
and self adjointness . . . . . . . . . . . . . . . . . . . . . . .
. . . . 98 The Heisenberg picture. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 325 Critical
point dominance in quantum field models. . . . . . . . . . . . . .
. . . . . . 326 q>,' quantum field model in the single-phase
regions: Differentiability of the mass and bounds on critical
exponents. . . . 341 Remark on the existence of q>:. . . * . . .
. * . . . . * . . . . . . . . * . * . . . . . . . . . . * . 345 On
the approach to the critical point . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 348 Critical exponents and elementary
particles. . . . . . . . . . . . . . . . . . . . . . . . . . 362 V
Particle Structure Introduction. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 371 Bibliography . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 The
entropy principle for vertex functions in quantum field models. . .
. . 372 Three-particle structure of q>4 interactions and the
scaling limit . . . . . . . . . 397 Two and three body equations in
quantum field models. . . . . . . . . . . . . . . 409 Particles and
scaling for lattice fields and Ising models. . . . . . . . . . . .
. . . . 437 The resummation of one particle lines. . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 450 VI Bounds on
Coupling Constants Introduction. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 479 Bibliography . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
Absolute bounds on vertices and couplings. . . . . . . . . . . . .
. . . . . . . . . . . . . 480 The coupling constant in a q>4
field theory. . . . . . . . . . . . . . . . . . . . . . . . . . .
491 VII Confinement and Instantons Introduction. . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 497 Bibliography . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 497 Instantons in a U(I) lattice gauge theory: A coulomb dipole
gas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 498 Charges, vortices and confinement. . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 516 ix VIII
Reflection Positivity Introduction. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 531 Bibliography . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531 A
note on reflection positivity . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 532 x Introduction This volume
contains a selection of expository articles on quantum field theory
and statistical mechanics by James Glimm and Arthur Jaffe. They
include a solution of the original interacting quantum field
equations and a description of the physics which these equations
contain. Quantum fields were proposed in the late 1920s as the
natural framework which combines quantum theory with relativ ity.
They have survived ever since.
Describes fifteen years' work which has led to the construc- tion
of solutions to non-linear relativistic local field e- quations in
2 and 3 space-time dimensions. Gives proof of the existence theorem
in 2 dimensions and describes many properties of the solutions.
This volume contains a selection of expository articles on quantum
field theory and statistical mechanics by James Glimm and Arthur
Jaffe. They include a solution of the original interacting quantum
field equations and a description of the physics which these
equations contain. Quantum fields were proposed in the late 1920s
as the natural framework which combines quantum theory with relativ
ity. They have survived ever since. The mathematical description
for quantum theory starts with a Hilbert space H of state vectors.
Quantum fields are linear operators on this space, which satisfy
nonlinear wave equations of fundamental physics, including coupled
Dirac, Max well and Yang-Mills equations. The field operators are
restricted to satisfy a "locality" requirement that they commute
(or anti-commute in the case of fer mions) at space-like separated
points. This condition is compatible with finite propagation speed,
and hence with special relativity. Asymptotically, these fields
converge for large time to linear fields describing free particles.
Using these ideas a scattering theory had been developed, based on
the existence of local quantum fields."
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 325 Critical
point dominance in quantum field models. . . . . . . . . . . . . .
. . . . . . 326 q>/ quantum field model in the single-phase
regions: Differentiability of the mass and bounds on critical
exponents. . . . 341 Remark on the existence of q>. ' . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
On the approach to the critical point . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 348 Critical exponents and
elementary particles. . . . . . . . . . . . . . . . . . . . . . . .
. . 362 V Particle Structure Introduction. . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 371 Bibliography . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
371 The entropy principle for vertex functions in quantum field
models . . . . . 372 Three-particle structure of q>4
interactions and the scaling limit . . . . . . . . . 397 Two and
three body equations in quantum field models . . . . . . . . . . .
. . . . 409 Particles and scaling for lattice fields and Ising
models. . . . . . . . . . . . . . . . 437 The resummation of one
particle lines. . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 450 VI Bounds on Coupling Constants Introduction. . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 479 Bibliography . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 479 Absolute bounds on vertices and couplings . . . . .
. . . . . . . . . . . . . . . . . . . . . 480 The coupling constant
in a q>4 field theory. . . . . . . . . . . . . . . . . . . . . .
. . . . . 491 VII Confinement and Instantons Introduction. . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 497 Bibliography . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 497 Instantons in a U(I) lattice gauge theory: A
coulomb dipole gas. . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 498 Charges, vortices and confinement.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
516 vi VIII Reflection Positivity Introduction. . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 531 Bibliography . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 531 A note on reflection positivity . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 532 vii Collected
Papers - Volume 1 Introduction. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 5 I Inimite
Reoormalization of the Hamiltonian Is Necessary 9 II Quantum Field
Theory Models: Part I. The cp~ Model 13 Introduction. . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 13 Fock space. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 17 Qspace. . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
The Hamiltonian H(g). . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 39 Removing the space
cutoff. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 50 Lorentz covariance and the Haag-Kastler
axioms. . . . . . . . . . . . . . . . . . . . . . 61 Part II. The
Yukawa Model 71 Preliminaries . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
72 First and second order estimates. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 86 Resolvent convergence
and self adjointness . . . . . . . . . . . . . . . . . . . . . . .
. . . . 98 The Heisenberg picture. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .
|
|