Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 7 of 7 matches in All Departments
Explains numeric and symbolic approaches to data association, tracking combination, classification, and situation assessment, and provides an overview of data fusion theory and mathematical formalisms.
With the recent proliferation of service-oriented architectures (SOA), cloud computing technologies, and distributed-interconnected systems, distributed fusion is taking on a larger role in a variety of applications-from environmental monitoring and crisis management to intelligent buildings and defense. Drawing on the work of leading experts around the world, Distributed Data Fusion for Network-Centric Operations examines the state of the art of data fusion in a distributed sensing, communications, and computing environment. Get Insight into Designing and Implementing Data Fusion in a Distributed Network Addressing the entirety of information fusion, the contributors cover everything from signal and image processing, through estimation, to situation awareness. In particular, the work offers a timely look at the issues and solutions involving fusion within a distributed network enterprise. These include critical design problems, such as how to maintain a pedigree of agents or nodes that receive information, provide their contribution to the dataset, and pass to other network components. The book also tackles dynamic data sharing within a network-centric enterprise, distributed fusion effects on state estimation, graph-theoretic methods to optimize fusion performance, human engineering factors, and computer ontologies for higher levels of situation assessment. A comprehensive introduction to this emerging field and its challenges, the book explores how data fusion can be used within grid, distributed, and cloud computing architectures. Bringing together both theoretical and applied research perspectives, this is a valuable reference for fusion researchers and practitioners. It offers guidance and insight for those working on the complex issues of designing and implementing distributed, decentralized information fusion.
In the years since the bestselling first edition, fusion research and applications have adapted to service-oriented architectures and pushed the boundaries of situational modeling in human behavior, expanding into fields such as chemical and biological sensing, crisis management, and intelligent buildings. Multisensor Data Fusion, Second Edition represents the most current concepts and theory as information fusion expands into the realm of network-centric architectures. It reflects new developments in distributed and detection fusion, situation and impact awareness in complex applications, and human cognitive concepts. With contributions from the world's leading fusion experts, this second edition expands to 31 chapters covering the fundamental theory and cutting-edge developments that are driving this field. New to the Second Edition- - Applications in electromagnetic systems and chemical and biological sensors - Army command and combat identification techniques - Techniques for automated reasoning - Advances in Kalman filtering - Fusion in a network centric environment - Service-oriented architecture concepts - Intelligent agents for improved decision making - Commercial off-the-shelf (COTS) software tools From basic information to state-of-the-art theories, this second edition continues to be a unique, comprehensive, and up-to-date resource for data fusion systems designers.
With the recent proliferation of service-oriented architectures (SOA), cloud computing technologies, and distributed-interconnected systems, distributed fusion is taking on a larger role in a variety of applications from environmental monitoring and crisis management to intelligent buildings and defense. Drawing on the work of leading experts around the world, Distributed Data Fusion for Network-Centric Operations examines the state of the art of data fusion in a distributed sensing, communications, and computing environment. Get Insight into Designing and Implementing Data Fusion in a Distributed Network Addressing the entirety of information fusion, the contributors cover everything from signal and image processing, through estimation, to situation awareness. In particular, the work offers a timely look at the issues and solutions involving fusion within a distributed network enterprise. These include critical design problems, such as how to maintain a pedigree of agents or nodes that receive information, provide their contribution to the dataset, and pass to other network components. The book also tackles dynamic data sharing within a network-centric enterprise, distributed fusion effects on state estimation, graph-theoretic methods to optimize fusion performance, human engineering factors, and computer ontologies for higher levels of situation assessment. A comprehensive introduction to this emerging field and its challenges, the book explores how data fusion can be used within grid, distributed, and cloud computing architectures. Bringing together both theoretical and applied research perspectives, this is a valuable reference for fusion researchers and practitioners. It offers guidance and insight for those working on the complex issues of designing and implementing distributed, decentralized information fusion.
The International Symposium on Distributed Computing and Artificial Intelligence is an annual forum that brings together ideas, projects, lessons, etc. associated with distr- uted computing, artificial intelligence and its applications in different themes. This meeting has been held at the University of Salamanca from the 22th to the 24th of October 2008. This symposium has be organized by the Biomedicine, Intelligent S- tem and Educational Technology Research Group (http: //bisite. usal. es/) of the Univ- sity of Salamanca. The technology transfer in this field is still a challenge and for that reason this type of contributions has been specially considered in this edition. This c- ference is the forum in which to present application of innovative techniques to complex problems. The artificial intelligence is changing our society. Its application in distr- uted environments, such as the Internet, electronic commerce, mobile communications, wireless devices, distributed computing, and so on is increasing and is becoming an element of high added value and economic potential, both industrial and research. These technologies are changing constantly as a result of the large research and technical effort being undertaken in both universities and businesses. The exchange of ideas between scientists and technicians from both academic and business areas is essential to facilitate the development of systems that meet the demands of today's society.
Providing a high level of autonomy for a human-machine team requires assumptions that address behavior and mutual trust. The performance of a human-machine team is maximized when the partnership provides mutual benefits that satisfy design rationales, balance of control, and the nature of autonomy. The distinctively different characteristics and features of humans and machines are likely why they have the potential to work well together, overcoming each other's weaknesses through cooperation, synergy, and interdependence which forms a “collective intelligence.” Trust is bidirectional and two-sided; humans need to trust AI technology, but future AI technology may also need to trust humans.Putting AI in the Critical Loop: Assured Trust and Autonomy in Human-Machine Teams focuses on human-machine trust and “assured” performance and operation in order to realize the potential of autonomy. This book aims to take on the primary challenges of bidirectional trust and performance of autonomous systems, providing readers with a review of the latest literature, the science of autonomy, and a clear path towards the autonomy of human-machine teams and systems. Throughout this book, the intersecting themes of collective intelligence, bidirectional trust, and continual assurance form the challenging and extraordinarily interesting themes which will help lay the groundwork for the audience to not only bridge the knowledge gaps, but also to advance this science to develop better solutions.
Many current AI and machine learning algorithms and data and information fusion processes attempt in software to estimate situations in our complex world of nested feedback loops. Such algorithms and processes must gracefully and efficiently adapt to technical challenges such as data quality induced by these loops, and interdependencies that vary in complexity, space, and time. To realize effective and efficient designs of computational systems, a Systems Engineering perspective may provide a framework for identifying the interrelationships and patterns of change between components rather than static snapshots. We must study cascading interdependencies through this perspective to understand their behavior and to successfully adopt complex system-of-systems in society. This book derives in part from the presentations given at the AAAI 2021 Spring Symposium session on Leveraging Systems Engineering to Realize Synergistic AI / Machine Learning Capabilities. Its 16 chapters offer an emphasis on pragmatic aspects and address topics in systems engineering; AI, machine learning, and reasoning; data and information fusion; intelligent systems; autonomous systems; interdependence and teamwork; human-computer interaction; trust; and resilience.
|
You may like...Not available
|