Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
The Knowledge Seeker is a useful system to develop various intelligent applications such as ontology-based search engine, ontology-based text classification system, ontological agent system, and semantic web system etc. The Knowledge Seeker contains four different ontological components. First, it defines the knowledge representation model !V Ontology Graph. Second, an ontology learning process that based on chi-square statistics is proposed for automatic learning an Ontology Graph from texts for different domains. Third, it defines an ontology generation method that transforms the learning outcome to the Ontology Graph format for machine processing and also can be visualized for human validation. Fourth, it defines different ontological operations (such as similarity measurement and text classification) that can be carried out with the use of generated Ontology Graphs. The final goal of the KnowledgeSeeker system framework is that it can improve the traditional information system with higher efficiency. In particular, it can increase the accuracy of a text classification system, and also enhance the search intelligence in a search engine. This can be done by enhancing the system with machine processable ontology.
"Reliable Knowledge Discovery" focuses on theory, methods, and techniques for RKDD, a new sub-field of KDD. It studies the theory and methods to assure the reliability and trustworthiness of discovered knowledge and to maintain the stability and consistency of knowledge discovery processes. RKDD has a broad spectrum of applications, especially in critical domains like medicine, finance, and military. "Reliable Knowledge Discovery" also presents methods and techniques for designing robust knowledge-discovery processes. Approaches to assessing the reliability of the discovered knowledge are introduced. Particular attention is paid to methods for reliable feature selection, reliable graph discovery, reliable classification, and stream mining. Estimating the data trustworthiness is covered in this volume as well. Case studies are provided in many chapters. "Reliable Knowledge Discovery" is designed for researchers and advanced-level students focused on computer science and electrical engineering as a secondary text or reference. Professionals working in this related field and KDD application developers will also find this book useful.
"Reliable Knowledge Discovery" focuses on theory, methods, and techniques for RKDD, a new sub-field of KDD. It studies the theory and methods to assure the reliability and trustworthiness of discovered knowledge and to maintain the stability and consistency of knowledge discovery processes. RKDD has a broad spectrum of applications, especially in critical domains like medicine, finance, and military. "Reliable Knowledge Discovery" also presents methods and techniques for designing robust knowledge-discovery processes. Approaches to assessing the reliability of the discovered knowledge are introduced. Particular attention is paid to methods for reliable feature selection, reliable graph discovery, reliable classification, and stream mining. Estimating the data trustworthiness is covered in this volume as well. Case studies are provided in many chapters. "Reliable Knowledge Discovery" is designed for researchers and advanced-level students focused on computer science and electrical engineering as a secondary text or reference. Professionals working in this related field and KDD application developers will also find this book useful.
The Knowledge Seeker is a useful system to develop various intelligent applications such as ontology-based search engine, ontology-based text classification system, ontological agent system, and semantic web system etc. The Knowledge Seeker contains four different ontological components. First, it defines the knowledge representation model !V Ontology Graph. Second, an ontology learning process that based on chi-square statistics is proposed for automatic learning an Ontology Graph from texts for different domains. Third, it defines an ontology generation method that transforms the learning outcome to the Ontology Graph format for machine processing and also can be visualized for human validation. Fourth, it defines different ontological operations (such as similarity measurement and text classification) that can be carried out with the use of generated Ontology Graphs. The final goal of the KnowledgeSeeker system framework is that it can improve the traditional information system with higher efficiency. In particular, it can increase the accuracy of a text classification system, and also enhance the search intelligence in a search engine. This can be done by enhancing the system with machine processable ontology.
|
You may like...
|