Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 12 of 12 matches in All Departments
Mobile computing is one of the biggest issues of computer technology, science and industry today. This book looks at the requirements of developing mobile computing systems and the challenges they pose to computer designers. It examines the requirements of mobile computing hardware, infrastructure and communications services. Information security and the data protection aspects of design are considered, together with telecommunications facilities for linking up to the worldwide computer infrastructure. The book also considers the mobility of computer users versus the portability of the equipment. The text also examines current applications of mobile computing in the public sector and future innovative applications.
The vast reduction in size and power consumption of CMOS circuitry
has led to a large research effort based around the vision of
ubiquitous networks of wireless communication nodes. The wireless
devices are usually designed to run on batteries. However, as the
networks increase in number and the devices decrease in size, the
replacement of depleted batteries is not practical. Furthermore, a
battery that is large enough to last the lifetime of the device
would dominate the overall system size, and thus is not very
attractive. There is clearly a need to explore alternative methods
of powering these small communication nodes. This book, therefore,
focuses on potential "ambient" sources of power that can be
scavenged or harvested and subsequently used to run low power
electronics and wireless transceivers.
Power Aware Design Methodologies is on power-awareness in design. The difference between low-power design and power-awareness in design is that whereas low-power design refers to minimizing power with or without a performance constraint, power-aware design refers to maximizing some other performance metric, subject to a power budget (even while reducing power dissipation). Power Aware Design Methodologies was conceived as an effort to bring all aspects of power-aware design methodologies together in a single document. It covers several layers of the design hierarchy from technology, circuit logic, and architectural levels up to the system layer. It includes discussion of techniques and methodologies for improving the power efficiency of CMOS circuits (digital and analog), systems on chip, microelectronic systems, wirelessly networked systems of computational nodes and so on. In addition to providing an in-depth analysis of the sources of power dissipation in VLSI circuits and systems and the technology and design trends, this book provides a myriad of state-of-the-art approaches to power optimization and control. The different chapters of Power Aware Design Methodologies have been written by leading researchers and experts in their respective areas. Contributions are from both academia and industry. The contributors have reported the various technologies, methodologies, and techniques in such a way that they are understandable and useful to the circuit and system designers, tool developers, and academic researchers and students. Power Aware Design Methodologies is written for the design professional and can be used as a textbook for an advanced course on power-aware designmethodologies.
Low-Energy FPGAs: Architecture and Design is a primary resource for both researchers and practicing engineers in the field of digital circuit design. The book addresses the energy consumption of Field-Programmable Gate Arrays (FPGAs). FPGAs are becoming popular as embedded components in computing platforms. The programmability of the FPGA can be used to customize implementations of functions on an application basis. This leads to performance gains, and enables reuse of expensive silicon. Chapter 1 provides an overview of digital circuit design and FPGAs. Chapter 2 looks at the implication of deep-submicron technology onFPGA power dissipation. Chapter 3 describes the exploration environment to guide and evaluate design decisions. Chapter 4 discusses the architectural optimization process to evaluate the trade-offs between the flexibility of the architecture, and the effect on the performance metrics. Chapter 5 reviews different circuit techniques to reduce the performance overhead of some of the dominant components. Chapter 6 shows methods to configure FPGAs to minimize the programming overhead. Chapter 7 addresses the physical realization of some of the critical components and the final implementation of a specific low-energy FPGA. Chapter 8 compares the prototype array to an equivalent commercial architecture.
Low Power Design Methodologies presents the first in-depth coverage of all the layers of the design hierarchy, ranging from the technology, circuit, logic and architectural levels, up to the system layer. The book gives insight into the mechanisms of power dissipation in digital circuits and presents state of the art approaches to power reduction. Finally, it introduces a global view of low power design methodologies and how these are being captured in the latest design automation environments. The individual chapters are written by the leading researchers in the area, drawn from both industry and academia. Extensive references are included at the end of each chapter. Audience: A broad introduction for anyone interested in low power design. Can also be used as a text book for an advanced graduate class. A starting point for any aspiring researcher.
Advanced concepts for wireless technologies present a vision of technology that is embedded in our surroundings and practically invisible. From established radio techniques like GSM, 802.11 or Bluetooth to more emerging technologies, such as Ultra Wide Band and smart dust motes, a common denominator for future progress is the underlying integrated circuit technology. Wireless Technologies responds to the explosive growth of standard cellular radios and radically different wireless applications by presenting new architectural and circuit solutions engineers can use to solve modern design problems. This reference addresses state-of-the art CMOS design in the context of emerging wireless applications, including 3G/4G cellular telephony, wireless sensor networks, and wireless medical application. Written by top international experts specializing in both the IC industry and academia, this carefully edited work uncovers new design opportunities in body area networks, medical implants, satellite communications, automobile radar detection, and wearable electronics. The book is divided into three sections: wireless system perspectives, chip architecture and implementation issues, and devices and technologies used to fabricate wireless integrated circuits. Contributors address key issues in the development of future silicon-based systems, such as scale of integration, ultra-low power dissipation, and the integration of heterogeneous circuit design style and processes onto one substrate. Wireless sensor network systems are now being applied in critical applications in commerce, healthcare, and security. This reference, which contains 25 practical and scientifically rigorous articles, provides the knowledge communications engineers need to design innovative methodologies at the circuit and system level.
Power Aware Design Methodologies was conceived as an effort to bring all aspects of power-aware design methodologies together in a single document. It covers several layers of the design hierarchy from technology, circuit logic, and architectural levels up to the system layer. It includes discussion of techniques and methodologies for improving the power efficiency of CMOS circuits (digital and analog), systems on chip, microelectronic systems, wirelessly networked systems of computational nodes and so on. In addition to providing an in-depth analysis of the sources of power dissipation in VLSI circuits and systems and the technology and design trends, this book provides a myriad of state-of-the-art approaches to power optimization and control. The different chapters of Power Aware Design Methodologies have been written by leading researchers and experts in their respective areas. Contributions are from both academia and industry. The contributors have reported the various technologies, methodologies, and techniques in such a way that they are understandable and useful.
Mobile computing is one of the biggest issues of computer technology, science and industry today. This book looks at the requirements of developing mobile computing systems and the challenges they pose to computer designers. It examines the requirements of mobile computing hardware, infrastructure and communications services. Information security and the data protection aspects of design are considered, together with telecommunications facilities for linking up to the worldwide computer infrastructure. The book also considers the mobility of computer users versus the portability of the equipment. The text also examines current applications of mobile computing in the public sector and future innovative applications.
Low-Energy FPGAs: Architecture and Design is a primary resource for both researchers and practicing engineers in the field of digital circuit design. The book addresses the energy consumption of Field-Programmable Gate Arrays (FPGAs). FPGAs are becoming popular as embedded components in computing platforms. The programmability of the FPGA can be used to customize implementations of functions on an application basis. This leads to performance gains, and enables reuse of expensive silicon. Chapter 1 provides an overview of digital circuit design and FPGAs. Chapter 2 looks at the implication of deep-submicron technology onFPGA power dissipation. Chapter 3 describes the exploration environment to guide and evaluate design decisions. Chapter 4 discusses the architectural optimization process to evaluate the trade-offs between the flexibility of the architecture, and the effect on the performance metrics. Chapter 5 reviews different circuit techniques to reduce the performance overhead of some of the dominant components. Chapter 6 shows methods to configure FPGAs to minimize the programming overhead. Chapter 7 addresses the physical realization of some of the critical components and the final implementation of a specific low-energy FPGA. Chapter 8 compares the prototype array to an equivalent commercial architecture.
Low Power Design Methodologies presents the first in-depth coverage of all the layers of the design hierarchy, ranging from the technology, circuit, logic and architectural levels, up to the system layer. The book gives insight into the mechanisms of power dissipation in digital circuits and presents state of the art approaches to power reduction. Finally, it introduces a global view of low power design methodologies and how these are being captured in the latest design automation environments. The individual chapters are written by the leading researchers in the area, drawn from both industry and academia. Extensive references are included at the end of each chapter. Audience: A broad introduction for anyone interested in low power design. Can also be used as a text book for an advanced graduate class. A starting point for any aspiring researcher.
The vast reduction in size and power consumption of CMOS circuitry has led to a large research effort based around the vision of wireless sensor networks. The proposed networks will be comprised of thousands of small wireless nodes that operate in a multi-hop fashion, replacing long transmission distances with many low power, low cost wireless devices. The result will be the creation of an intelligent environment responding to its inhabitants and ambient conditions. Wireless devices currently being designed and built for use in such environments typically run on batteries. However, as the networks increase in number and the devices decrease in size, the replacement of depleted batteries will not be practical. The cost of replacing batteries in a few devices that make up a small network about once per year is modest. However, the cost of replacing thousands of devices in a single building annually, some of which are in areas difficult to access, is simply not practical. Another approach would be to use a battery that is large enough to last the entire lifetime of the wireless sensor device. However, a battery large enough to last the lifetime of the device would dominate the overall system size and cost, and thus is not very attractive. Alternative methods of powering the devices that will make up the wireless networks are desperately needed.
The human brain, which is considered to be the prototypal biological computer, in its current incarnation is the result of more than a billion years of evolution. Its main functions have always been to regulate the internal milieu and to help the organism/being to survive and reproduce. With growing complexity, the brain has adopted a number of design principles that serve to maximize its efficiency in performing a broad range of tasks. The physical computer, on the other hand, has had only 200 years or so to evolve, and its perceived purpose is considerably different and far more constrained - that is, to solve a set of mathematical functions. This picture is rapidly changing however. One may argue that the functions of brains and computers are converging. This transition comes at a critical time when the roadmap for physical computing is becoming murky after a long period of exponential growth. Hence the existential questions arise if the underlying design principles may converge or cross-breed, or if the different mechanisms (physics versus biology) will always translate into radically different solutions. Neuromorphic systems are just one possible form of cross-fertilization between biological and physical computing. Other neural concepts at different levels of abstraction can help inspire us to rethink how to efficiently perform a number of meaningful tasks and functions. This leads to the topic of this monograph. This monograph reviews some of the insights arising from both computational neuroscience and computer engineering, and evaluates how these could combine to help us build a next generation of "computing" systems. To create insights and identify opportunities, this monograph firstly puts neural and physical computing face-to-face, and compares how they arose, how they differ right now with respect to a number of metrics such as computational and power density, and how these metrics may change over the future decades. A similar analysis is performed at the architectural/computational model level. While doing so, ground truths in terms of obtainable performance, bandwidth and power/energy efficiency are established. Thereafter, a number of neural design principles that may translate into design guidelines for future computers are identified. On close examination of these and other observations, it becomes apparent that cross-fertilization between the domains is already happening at multiple levels, albeit in an incremental way. The publication completes with perspectives on where brain-inspired computing may lead us, some speculative bets, and a number of forward-looking reflections.
|
You may like...
|