Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 7 of 7 matches in All Departments
The aim of this book is to illustrate that advanced fuzzy clustering algorithms can be used not only for partitioning of the data. It can also be used for visualization, regression, classification and time-series analysis, hence fuzzy cluster analysis is a good approach to solve complex data mining and system identification problems. This book is oriented to undergraduate and postgraduate and is well suited for teaching purposes.
This book presents new approaches to constructing fuzzy models for model-based control. Simulated examples and real-world applications from chemical and process engineering illustrate the main methods and techniques. Supporting MATLAB and Simulink files create a computational platform for exploration of the concepts and algorithms.
The key idea of this book is that hinging hyperplanes, neural networks and support vector machines can be transformed into fuzzy models, and interpretability of the resulting rule-based systems can be ensured by special model reduction and visualization techniques. The first part of the book deals with the identification of hinging hyperplane-based regression trees. The next part deals with the validation, visualization and structural reduction of neural networks based on the transformation of the hidden layer of the network into an additive fuzzy rule base system. Finally, based on the analogy of support vector regression and fuzzy models, a three-step model reduction algorithm is proposed to get interpretable fuzzy regression models on the basis of support vector regression. The authors demonstrate real-world use of the algorithms with examples taken from process engineering, and they support the text with downloadable Matlab code. The book is suitable for researchers, graduate students and practitioners in the areas of computational intelligence and machine learning.
This work presents a data visualization technique that combines graph-based topology representation and dimensionality reduction methods to visualize the intrinsic data structure in a low-dimensional vector space. The application of graphs in clustering and visualization has several advantages. A graph of important edges (where edges characterize relations and weights represent similarities or distances) provides a compact representation of the entire complex data set. This text describes clustering and visualization methods that are able to utilize information hidden in these graphs, based on the synergistic combination of clustering, graph-theory, neural networks, data visualization, dimensionality reduction, fuzzy methods, and topology learning. The work contains numerous examples to aid in the understanding and implementation of the proposed algorithms, supported by a MATLAB toolbox available at an associated website.
This book presents new approaches to constructing fuzzy models for model-based control. Simulated examples and real-world applications from chemical and process engineering illustrate the main methods and techniques. Supporting MATLAB and Simulink files create a computational platform for exploration of the concepts and algorithms.
The concept of industry 4.0 is spreading worldwide and readiness models exist to determine organizational or national maturity. On the other hand, the regional perspective of the digital transformation is yet to be widely researched, although it significantly determines how the concept of industry 4.0 can be introduced to the organisations. This book identifies the regional aspect of industry 4.0 and provides a regional (NUTS 2 classified) industry 4.0 indicator system model that is based on open data sources. This new model serves as a tool to evaluate regional economy to support governmental decisions. It also provides territorial councils with a decision-support tool for field investment decisions. And finally, this model offers investors with a heat map to evaluate regional economies successful implementation of industry 4.0 solutions.
This book explores the key idea that the dynamical properties of complex systems can be determined by effectively calculating specific structural features using network science-based analysis. Furthermore, it argues that certain dynamical behaviours can stem from the existence of specific motifs in the network representation. Over the last decade, network science has become a widely applied methodology for the analysis of dynamical systems. Representing the system as a mathematical graph allows several network-based methods to be applied, and centrality and clustering measures to be calculated in order to characterise and describe the behaviours of dynamical systems. The applicability of the algorithms developed here is presented in the form of well-known benchmark examples. The algorithms are supported by more than 50 figures and more than 170 references; taken together, they provide a good overview of the current state of network science-based analysis of dynamical systems, and suggest further reading material for researchers and students alike. The files for the proposed toolbox can be downloaded from a corresponding website.
|
You may like...
|