0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R5,000 - R10,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Micromechanisms of Fracture and Fatigue - In a Multi-scale Context (Hardcover, 2010 Ed.): Jaroslav Pokluda, Pavel Sandera Micromechanisms of Fracture and Fatigue - In a Multi-scale Context (Hardcover, 2010 Ed.)
Jaroslav Pokluda, Pavel Sandera
R5,175 Discovery Miles 51 750 Ships in 18 - 22 working days

Micromechanisms of Fracture and Fatigue forms the culmination of 20 years of research in the field of fatigue and fracture. It discusses a range of topics and comments on the state of the art for each. The first part is devoted to models of deformation and fracture of perfect crystals. Using various atomistic methods, the theoretical strength of solids under simple and complex loading is calculated for a wide range of elements and compounds, and compared with experimental data. The connection between the onset of local plasticity in nanoindentation tests and the ideal shear strength is analysed using a multi-scale approach. Moreover, the nature of intrinsic brittleness or ductility of perfect crystal lattices is demonstrated by the coupling of atomistic and mesoscopic approaches, and compared with brittle/ductile behaviour of engineering materials. The second part addresses extrinsic sources of fracture toughness of engineering materials, related to their microstructure and microstructurally-induced crack tortuosity. Micromechanisms of ductile fracture are also described, in relation to the fracture strain of materials. Results of multilevel modelling, including statistical aspects of microstructure, are used to explain remarkable phenomena discovered in experiments. In the third part of the book, basic micromechanisms of fatigue cracks propagation under uniaxial and multiaxial loading are discussed on the basis of the unified mesoscopic model of crack tip shielding and closure, taking both microstructure and statistical effects into account. Applications to failure analysis are also outlined, and an attempt is made to distinguish intrinsic and extrinsic sources of materials resistance to fracture. Micromechanisms of Fracture and Fatigue provides scientists, researchers and postgraduate students with not only a deep insight into basic micromechanisms of fracture behaviour of materials, but also a number of engineering applications.

Micromechanisms of Fracture and Fatigue - In a Multi-scale Context (Paperback, 2010 ed.): Jaroslav Pokluda, Pavel Sandera Micromechanisms of Fracture and Fatigue - In a Multi-scale Context (Paperback, 2010 ed.)
Jaroslav Pokluda, Pavel Sandera
R5,147 Discovery Miles 51 470 Ships in 18 - 22 working days

Micromechanisms of Fracture and Fatigue forms the culmination of 20 years of research in the field of fatigue and fracture. It discusses a range of topics and comments on the state of the art for each. The first part is devoted to models of deformation and fracture of perfect crystals. Using various atomistic methods, the theoretical strength of solids under simple and complex loading is calculated for a wide range of elements and compounds, and compared with experimental data. The connection between the onset of local plasticity in nanoindentation tests and the ideal shear strength is analysed using a multi-scale approach. Moreover, the nature of intrinsic brittleness or ductility of perfect crystal lattices is demonstrated by the coupling of atomistic and mesoscopic approaches, and compared with brittle/ductile behaviour of engineering materials. The second part addresses extrinsic sources of fracture toughness of engineering materials, related to their microstructure and microstructurally-induced crack tortuosity. Micromechanisms of ductile fracture are also described, in relation to the fracture strain of materials. Results of multilevel modelling, including statistical aspects of microstructure, are used to explain remarkable phenomena discovered in experiments. In the third part of the book, basic micromechanisms of fatigue cracks propagation under uniaxial and multiaxial loading are discussed on the basis of the unified mesoscopic model of crack tip shielding and closure, taking both microstructure and statistical effects into account. Applications to failure analysis are also outlined, and an attempt is made to distinguish intrinsic and extrinsic sources of materials resistance to fracture. Micromechanisms of Fracture and Fatigue provides scientists, researchers and postgraduate students with not only a deep insight into basic micromechanisms of fracture behaviour of materials, but also a number of engineering applications.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Exploding Galaxies - Art of David…
Guy Brett Paperback R637 Discovery Miles 6 370
Trefoil DAFA A4 Self-Healing Cutting Mat…
R106 Discovery Miles 1 060
Kruissteek - Miniature
Fransie Snyman Paperback R75 R70 Discovery Miles 700
Hell Run Tobruk
Justin Fox Paperback R310 R277 Discovery Miles 2 770
Staedtler Noris Club 21cm Large Hobby…
R443 Discovery Miles 4 430
Smart Cities in Application…
Stan McClellan Hardcover R2,202 Discovery Miles 22 020
Arithmetic for Junior Pupils
Archibald McMurchy, James Brown Hardcover R834 Discovery Miles 8 340
Modern Management and Leadership - Best…
Mark Tarallo Paperback R1,183 Discovery Miles 11 830
Contemporary Art and Artists - An Index…
Pamela Jeffcott Parry Hardcover R2,455 R2,229 Discovery Miles 22 290
Handover Steel Ruler (60cm)
R261 Discovery Miles 2 610

 

Partners