Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 9 of 9 matches in All Departments
In applications, and especially in mathematical finance, random
time-dependent events are often modeled as stochastic processes.
Assumptions are made about the structure of such processes, and
serious researchers will want to justify those assumptions through
the use of data. As statisticians are wont to say, "In God we
trust; all others must bring data."
Initially the theory of convergence in law of stochastic processes was developed quite independently from the theory of martingales, semimartingales and stochastic integrals. Apart from a few exceptions essentially concerning diffusion processes, it is only recently that the relation between the two theories has been thoroughly studied. The authors of this Grundlehren volume, two of the international leaders in the field, propose a systematic exposition of convergence in law for stochastic processes, from the point of view of semimartingale theory, with emphasis on results that are useful for mathematical theory and mathematical statistics. This leads them to develop in detail some particularly useful parts of the general theory of stochastic processes, such as martingale problems, and absolute continuity or contiguity results. The book contains an introduction to the theory of martingales and semimartingales, random measures stochastic integrales, Skorokhod topology, etc., as well as a large number of results which have never appeared in book form, and some entirely new results. The second edition contains some additions to the text and references. Some parts are completely rewritten.
Bretagnolle, Jean: Processus a accroissements independants.- Ibragimov, Ildar: Theoremes limites pour les marches aleatoires.- Jacod, Jean: Theoremes limite pour les processus.- Bertoin, Jean: Subordinators: Examples and applications.- Doney, Ronald A.: Fluctuation theory for Levy processes. "
This volume by two international leaders in the field proposes a systematic exposition of convergence in law for stochastic processes from the point of view of semimartingale theory. It emphasizes results that are useful for mathematical theory and mathematical statistics. Coverage develops in detail useful parts of the general theory of stochastic processes, such as martingale problems and absolute continuity or contiguity results.
Over the past 10-15 years, we have seen a revival of general Levy ' processes theory as well as a burst of new applications. In the past, Brownian motion or the Poisson process have been considered as appropriate models for most applications. Nowadays, the need for more realistic modelling of irregular behaviour of phen- ena in nature and society like jumps, bursts, and extremeshas led to a renaissance of the theory of general Levy ' processes. Theoretical and applied researchers in elds asdiverseas quantumtheory,statistical physics,meteorology,seismology,statistics, insurance, nance, and telecommunication have realised the enormous exibility of Lev ' y models in modelling jumps, tails, dependence and sample path behaviour. L' evy processes or Levy ' driven processes feature slow or rapid structural breaks, extremal behaviour, clustering, and clumping of points. Toolsandtechniquesfromrelatedbut disctinct mathematical elds, such as point processes, stochastic integration,probability theory in abstract spaces, and differ- tial geometry, have contributed to a better understanding of Le 'vy jump processes. As in many other elds, the enormous power of modern computers has also changed the view of Levy ' processes. Simulation methods for paths of Levy ' p- cesses and realisations of their functionals have been developed. Monte Carlo simulation makes it possible to determine the distribution of functionals of sample paths of Levy ' processes to a high level of accuracy.
This introduction to Probability Theory can be used, at the beginning graduate level, for a one-semester course on Probability Theory or for self-direction without benefit of a formal course; the measure theory needed is developed in the text. It will also be useful for students and teachers in related areas such as Finance Theory (Economics), Electrical Engineering, and Operations Research. The text covers the essentials in a directed and lean way with 28 short chapters. Assuming of readers only an undergraduate background in mathematics, it brings them from a starting knowledge of the subject to a knowledge of the basics of Martingale Theory. After learning Probability Theory from this text, the interested student will be ready to continue with the study of more advanced topics, such as Brownian Motion and Ito Calculus, or Statistical Inference. The second edition contains some additions to the text and to the references and some parts are completely rewritten.
In applications, and especially in mathematical finance, random
time-dependent events are often modeled as stochastic processes.
Assumptions are made about the structure of such processes, and
serious researchers will want to justify those assumptions through
the use of data. As statisticians are wont to say, In God we trust;
all others must bring data.
High-frequency trading is an algorithm-based computerized trading practice that allows firms to trade stocks in milliseconds. Over the last fifteen years, the use of statistical and econometric methods for analyzing high-frequency financial data has grown exponentially. This growth has been driven by the increasing availability of such data, the technological advancements that make high-frequency trading strategies possible, and the need of practitioners to analyze these data. This comprehensive book introduces readers to these emerging methods and tools of analysis. Yacine Ait-Sahalia and Jean Jacod cover the mathematical foundations of stochastic processes, describe the primary characteristics of high-frequency financial data, and present the asymptotic concepts that their analysis relies on. Ait-Sahalia and Jacod also deal with estimation of the volatility portion of the model, including methods that are robust to market microstructure noise, and address estimation and testing questions involving the jump part of the model. As they demonstrate, the practical importance and relevance of jumps in financial data are universally recognized, but only recently have econometric methods become available to rigorously analyze jump processes. Ait-Sahalia and Jacod approach high-frequency econometrics with a distinct focus on the financial side of matters while maintaining technical rigor, which makes this book invaluable to researchers and practitioners alike."
|
You may like...
|