Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 2 of 2 matches in All Departments
Stability of Discrete Non-conservative Systems first exposes the general concepts and results concerning stability issues. It then presents an approach of stability that is different from Lyapunov which leads to the second order work criterion. Thanks to the new concept of Kinematic Structural Stability, a complete equivalence between two approaches of stability is obtained for a divergent type of stability. Extensions to flutter instability, to continuous systems, and to the dual questions concerning the measure of non-conservativeness provides a full, fresh look at these fundamental questions. A special chapter is devoted to applications for granular systems.
Multi-body Kinematics and Dynamics with Lie Groups explores the use of Lie groups in the kinematics and dynamics of rigid body systems. The first chapter reveals the formal properties of Lie groups on the examples of rotation and Euclidean displacement groups. Chapters 2 and 3 show the specific algebraic properties of the displacement group, explaining why dual numbers play a role in kinematics (in the so-called screw theory). Chapters 4 to 7 make use of those mathematical tools to expound the kinematics of rigid body systems and in particular the kinematics of open and closed kinematical chains. A complete classification of their singularities demonstrates the efficiency of the method. Dynamics of multibody systems leads to very big computations. Chapter 8 shows how Lie groups make it possible to put them in the most compact possible form, useful for the design of software, and expands the example of tree-structured systems. This book is accessible to all interested readers as no previous knowledge of the general theory is required.
|
You may like...
|