0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (3)
  • -
Status
Brand

Showing 1 - 3 of 3 matches in All Departments

Nonlinear Dispersive Partial Differential Equations and Inverse Scattering (Hardcover, 1st ed. 2019): Peter D. Miller, Peter A.... Nonlinear Dispersive Partial Differential Equations and Inverse Scattering (Hardcover, 1st ed. 2019)
Peter D. Miller, Peter A. Perry, Jean-Claude Saut, Catherine Sulem
R3,830 Discovery Miles 38 300 Ships in 10 - 15 working days

This volume contains lectures and invited papers from the Focus Program on "Nonlinear Dispersive Partial Differential Equations and Inverse Scattering" held at the Fields Institute from July 31-August 18, 2017. The conference brought together researchers in completely integrable systems and PDE with the goal of advancing the understanding of qualitative and long-time behavior in dispersive nonlinear equations. The program included Percy Deift's Coxeter lectures, which appear in this volume together with tutorial lectures given during the first week of the focus program. The research papers collected here include new results on the focusing nonlinear Schroedinger (NLS) equation, the massive Thirring model, and the Benjamin-Bona-Mahoney equation as dispersive PDE in one space dimension, as well as the Kadomtsev-Petviashvili II equation, the Zakharov-Kuznetsov equation, and the Gross-Pitaevskii equation as dispersive PDE in two space dimensions. The Focus Program coincided with the fiftieth anniversary of the discovery by Gardner, Greene, Kruskal and Miura that the Korteweg-de Vries (KdV) equation could be integrated by exploiting a remarkable connection between KdV and the spectral theory of Schrodinger's equation in one space dimension. This led to the discovery of a number of completely integrable models of dispersive wave propagation, including the cubic NLS equation, and the derivative NLS equation in one space dimension and the Davey-Stewartson, Kadomtsev-Petviashvili and Novikov-Veselov equations in two space dimensions. These models have been extensively studied and, in some cases, the inverse scattering theory has been put on rigorous footing. It has been used as a powerful analytical tool to study global well-posedness and elucidate asymptotic behavior of the solutions, including dispersion, soliton resolution, and semiclassical limits.

Nonlinear Dispersive Equations - Inverse Scattering and PDE Methods (Hardcover, 1st ed. 2021): Christian Klein, Jean-Claude Saut Nonlinear Dispersive Equations - Inverse Scattering and PDE Methods (Hardcover, 1st ed. 2021)
Christian Klein, Jean-Claude Saut
R4,613 Discovery Miles 46 130 Ships in 10 - 15 working days

Nonlinear Dispersive Equations are partial differential equations that naturally arise in physical settings where dispersion dominates dissipation, notably hydrodynamics, nonlinear optics, plasma physics and Bose-Einstein condensates. The topic has traditionally been approached in different ways, from the perspective of modeling of physical phenomena, to that of the theory of partial differential equations, or as part of the theory of integrable systems. This monograph offers a thorough introduction to the topic, uniting the modeling, PDE and integrable systems approaches for the first time in book form. The presentation focuses on three "universal" families of physically relevant equations endowed with a completely integrable member: the Benjamin-Ono, Davey-Stewartson, and Kadomtsev-Petviashvili equations. These asymptotic models are rigorously derived and qualitative properties such as soliton resolution are studied in detail in both integrable and non-integrable models. Numerical simulations are presented throughout to illustrate interesting phenomena.By presenting and comparing results from different fields, the book aims to stimulate scientific interactions and attract new students and researchers to the topic. To facilitate this, the chapters can be read largely independently of each other and the prerequisites have been limited to introductory courses in PDE theory.

Nonlinear Dispersive Partial Differential Equations and Inverse Scattering (Paperback, 1st ed. 2019): Peter D. Miller, Peter A.... Nonlinear Dispersive Partial Differential Equations and Inverse Scattering (Paperback, 1st ed. 2019)
Peter D. Miller, Peter A. Perry, Jean-Claude Saut, Catherine Sulem
R3,798 Discovery Miles 37 980 Ships in 10 - 15 working days

This volume contains lectures and invited papers from the Focus Program on "Nonlinear Dispersive Partial Differential Equations and Inverse Scattering" held at the Fields Institute from July 31-August 18, 2017. The conference brought together researchers in completely integrable systems and PDE with the goal of advancing the understanding of qualitative and long-time behavior in dispersive nonlinear equations. The program included Percy Deift's Coxeter lectures, which appear in this volume together with tutorial lectures given during the first week of the focus program. The research papers collected here include new results on the focusing nonlinear Schroedinger (NLS) equation, the massive Thirring model, and the Benjamin-Bona-Mahoney equation as dispersive PDE in one space dimension, as well as the Kadomtsev-Petviashvili II equation, the Zakharov-Kuznetsov equation, and the Gross-Pitaevskii equation as dispersive PDE in two space dimensions. The Focus Program coincided with the fiftieth anniversary of the discovery by Gardner, Greene, Kruskal and Miura that the Korteweg-de Vries (KdV) equation could be integrated by exploiting a remarkable connection between KdV and the spectral theory of Schrodinger's equation in one space dimension. This led to the discovery of a number of completely integrable models of dispersive wave propagation, including the cubic NLS equation, and the derivative NLS equation in one space dimension and the Davey-Stewartson, Kadomtsev-Petviashvili and Novikov-Veselov equations in two space dimensions. These models have been extensively studied and, in some cases, the inverse scattering theory has been put on rigorous footing. It has been used as a powerful analytical tool to study global well-posedness and elucidate asymptotic behavior of the solutions, including dispersion, soliton resolution, and semiclassical limits.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Croxley CREATE Fibre Tip Khokis (12…
R43 Discovery Miles 430
Dunlop Pro Padel Balls (Green)(Pack of…
R199 R165 Discovery Miles 1 650
Elecstor 18W In-Line UPS (Black)
R999 R869 Discovery Miles 8 690
A Seed Of A Dream - Morris Isaacson High…
Clive Glaser Paperback R265 R195 Discovery Miles 1 950
Polaroid Fit Active Watch (Pink)
R742 Discovery Miles 7 420
Borgonovo Polka Ice Bucket
R124 R100 Discovery Miles 1 000
Positively Me - Daring To Live And Love…
Nozibele Mayaba, Sue Nyathi Paperback  (2)
R310 R210 Discovery Miles 2 100
Jumbo Puzzle Mates Puzzle & Roll Storage…
 (4)
R699 R639 Discovery Miles 6 390
Mountain Backgammon - The Classic Game…
Lily Dyu R575 R460 Discovery Miles 4 600
Docking Edition Multi-Functional…
R1,099 R799 Discovery Miles 7 990

 

Partners