Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 2 of 2 matches in All Departments
Just like the periodical crystalline potential in solid-state crystals determines their properties for the conduction of electrons, the periodical structuring of photonic crystals leads to envisioning the possibility of achieving a control of the photon flux in dielectric and metallic materials. The use of photonic crystals as a cage for storing, filtering or guiding light at the wavelength scale thus paves the way to the realisation of optical and optoelectronic devices with ultimate properties and dimensions. This should contribute toward meeting the demands for a greater miniaturisation that the processing of an ever increasing number of data requires. Photonic Crystals intends to provide students and researchers from different fields with the theoretical background needed for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, from optics to microwaves, where photonic crystals have found applications. As such, it aims at building bridges between optics, electromagnetism and solid-state physics. This book was written by six specialists of nanophotonics, and was coordinated by Jean-Michel Lourtioz, head of the Institut d'Electronique Fondamentale in Orsay and coordinator of the French Research Network in Nanophotonics."
This set of lecture notes provides a detailed and up-to-date description of a field undergoing explosive growth, that of confined photon systems in the shape of microcavities or photonic crystals. Bringing together world leaders in the field, it provides all the basic tools needed to master a subject which will have both major impact in fundamental studies and widescale applications. Confined photon systems enable the study of low-dimensional photonic systems, modified light-matter interaction, e.g. between excitons and photons in all-solid-state semiconductor microcavities, and of many phenomena of quantum optics, including single photon generation, squeezed light, quantum state entanglement, non-local quantum measurements, and, potentially, quantum computation. They are also on the verge of yielding new, high performance optical devices for large-scale industries such as telecommunications and display technology.
|
You may like...
|