Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
Semisimple Lie groups, and their algebraic analogues over fields other than the reals, are of fundamental importance in geometry, analysis, and mathematical physics. Three independent, self-contained volumes, under the general title Lie Theory, feature survey work and original results by well-established researchers in key areas of semisimple Lie theory. Harmonic Analysis on Symmetric Spacesa "General Plancherel Theorems presents extensive surveys by E.P. van den Ban, H. Schlichtkrull, and P. Delorme of the spectacular progress over the past decade in deriving the Plancherel theorem on reductive symmetric spaces. Van den Bana (TM)s introductory chapter explains the basic setup of a reductive symmetric space along with a careful study of the structure theory, particularly for the ring of invariant differential operators for the relevant class of parabolic subgroups. Advanced topics for the formulation and understanding of the proof are covered, including Eisenstein integrals, regularity theorems, Maassa "Selberg relations, and residue calculus for root systems. Schlichtkrull provides a cogent account of the basic ingredients in the harmonic analysis on a symmetric space through the explanation and definition of the Paleya "Wiener theorem. Approaching the Plancherel theorem through an alternative viewpoint, the Schwartz space, Delorme bases his discussion and proof on asymptotic expansions of eigenfunctions and the theory of intertwining integrals. Well suited for both graduate students and researchers in semisimple Lie theory and neighboring fields, possibly even mathematical cosmology, Harmonic Analysis on Symmetric Spacesa "General Plancherel Theorems provides abroad, clearly focused examination of semisimple Lie groups and their integral importance and applications to research in many branches of mathematics and physics. Knowledge of basic representation theory of Lie groups as well as familiarity with semisimple Lie groups, symmetric spaces, and parabolic subgroups is required.
a set of three independent, self-contained volumes, features surveys and original work by well-established researchers in key areas of semisimple Lie groups. A wide range of topics is covered, including unitary representation theory and harmonic analysis. Lie Theory: Lie Algebras and Representations contains J. C. Jantzen's Nilpotent Orbits in Representation Theory, and K.-H. Neeb's Infinite Dimensional Groups and their Representations. Both papers are comprehensive treatments of the relevant geometry of orbits in Lie algebras, or their duals, and the correspondence to representations. Ideal for graduate students and researchers, each volume of Lie Theory provides a broad, clearly focused examination of semisimple Lie groups and their integral importance to research in many branches of mathematics.
Semisimple Lie groups, and their algebraic analogues over fields other than the reals, are of fundamental importance in geometry, analysis, and mathematical physics. Three independent, self-contained volumes, under the general title Lie Theory, feature survey work and original results by well-established researchers in key areas of semisimple Lie theory. Unitary Representations and Compactifications of Symmetric Spaces, a self-contained work by A. Borel, L. Ji, and T. Kobayashi, focuses on two fundamental questions in the theory of semisimple Lie groups: the geometry of Riemannian symmetric spaces and their compactifications; and branching laws for unitary representations, i.e., restricting unitary representations to (typically, but not exclusively, symmetric) subgroups and decomposing the ensuing representations into irreducibles. Ji's introductory chapter motivates the subject of symmetric spaces and their compactifications with carefully selected examples. A discussion of Satake and Furstenberg boundaries and a survey of the geometry of Riemannian symmetric spaces in general provide a good background for the second chapter, namely, the Borela "Ji authoritative treatment of various types of compactifications useful for studying symmetric and locally symmetric spaces. Borela "Ji further examine constructions of Oshima, De Concini, Procesi, and Melrose, which demonstrate the wide applicability of compactification techniques. Kobayashi examines the important subject of branching laws. Important concepts from modern representation theory, such as Harisha "Chandra modules, associated varieties, microlocal analysis, derived functor modules, and geometric quantization areintroduced. Concrete examples and relevant exercises engage the reader. Knowledge of basic representation theory of Lie groups as well as familiarity with semisimple Lie groups and symmetric spaces is required of the reader.
* First of three independent, self-contained volumes under the general title, "Lie Theory," featuring original results and survey work from renowned mathematicians. * Contains J. C. Jantzen's "Nilpotent Orbits in Representation Theory," and K.-H. Neeb's "Infinite Dimensional Groups and their Representations." * Comprehensive treatments of the relevant geometry of orbits in Lie algebras, or their duals, and the correspondence to representations. * Should benefit graduate students and researchers in mathematics and mathematical physics.
|
You may like...
Clare - The Killing Of A Gentle Activist
Christopher Clark
Paperback
How Did We Get Here? - A Girl's Guide to…
Mpoomy Ledwaba
Paperback
(1)
|