0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (4)
  • -
Status
Brand

Showing 1 - 4 of 4 matches in All Departments

Laser Filamentation - Mathematical Methods and Models (Hardcover, 1st ed. 2016): Andre D. Bandrauk, Emmanuel Lorin, Jerome V.... Laser Filamentation - Mathematical Methods and Models (Hardcover, 1st ed. 2016)
Andre D. Bandrauk, Emmanuel Lorin, Jerome V. Moloney
R3,371 Discovery Miles 33 710 Ships in 12 - 17 working days

This book is focused on the nonlinear theoretical and mathematical problems associated with ultrafast intense laser pulse propagation in gases and in particular, in air. With the aim of understanding the physics of filamentation in gases, solids, the atmosphere, and even biological tissue, specialists in nonlinear optics and filamentation from both physics and mathematics attempt to rigorously derive and analyze relevant non-perturbative models. Modern laser technology allows the generation of ultrafast (few cycle) laser pulses, with intensities exceeding the internal electric field in atoms and molecules (E=5x109 V/cm or intensity I = 3.5 x 1016 Watts/cm2 ). The interaction of such pulses with atoms and molecules leads to new, highly nonlinear nonperturbative regimes, where new physical phenomena, such as High Harmonic Generation (HHG), occur, and from which the shortest (attosecond - the natural time scale of the electron) pulses have been created. One of the major experimental discoveries in this nonlinear nonperturbative regime, Laser Pulse Filamentation, was observed by Mourou and Braun in 1995, as the propagation of pulses over large distances with narrow and intense cones. This observation has led to intensive investigation in physics and applied mathematics of new effects such as self-transformation of these pulses into white light, intensity clamping, and multiple filamentation, as well as to potential applications to wave guide writing, atmospheric remote sensing, lightning guiding, and military long-range weapons. The increasing power of high performance computers and the mathematical modelling and simulation of photonic systems has enabled many new areas of research. With contributions by theorists and mathematicians, supplemented by active experimentalists who are experts in the field of nonlinear laser molecule interaction and propagation, Laser Filamentation sheds new light on scientific and industrial applications of modern lasers.

Nonlinear Optical Materials (Hardcover, 1998 ed.): Jerome V. Moloney Nonlinear Optical Materials (Hardcover, 1998 ed.)
Jerome V. Moloney
R2,813 Discovery Miles 28 130 Ships in 10 - 15 working days

Mathematical methods play a significant role in the rapidly growing field of nonlinear optical materials. This volume discusses a number of successful or promising contributions. The overall theme of this volume is twofold: (1) the challenges faced in computing and optimizing nonlinear optical material properties; and (2) the exploitation of these properties in important areas of application. These include the design of optical amplifiers and lasers, as well as novel optical switches. Research topics in this volume include how to exploit the magnetooptic effect, how to work with the nonlinear optical response of materials, how to predict laser-induced breakdown in efficient optical devices, and how to handle electron cloud distortion in femtosecond processes.

Laser Filamentation - Mathematical Methods and Models (Paperback, Softcover reprint of the original 1st ed. 2016): Andre D.... Laser Filamentation - Mathematical Methods and Models (Paperback, Softcover reprint of the original 1st ed. 2016)
Andre D. Bandrauk, Emmanuel Lorin, Jerome V. Moloney
R3,391 Discovery Miles 33 910 Ships in 10 - 15 working days

This book is focused on the nonlinear theoretical and mathematical problems associated with ultrafast intense laser pulse propagation in gases and in particular, in air. With the aim of understanding the physics of filamentation in gases, solids, the atmosphere, and even biological tissue, specialists in nonlinear optics and filamentation from both physics and mathematics attempt to rigorously derive and analyze relevant non-perturbative models. Modern laser technology allows the generation of ultrafast (few cycle) laser pulses, with intensities exceeding the internal electric field in atoms and molecules (E=5x109 V/cm or intensity I = 3.5 x 1016 Watts/cm2 ). The interaction of such pulses with atoms and molecules leads to new, highly nonlinear nonperturbative regimes, where new physical phenomena, such as High Harmonic Generation (HHG), occur, and from which the shortest (attosecond - the natural time scale of the electron) pulses have been created. One of the major experimental discoveries in this nonlinear nonperturbative regime, Laser Pulse Filamentation, was observed by Mourou and Braun in 1995, as the propagation of pulses over large distances with narrow and intense cones. This observation has led to intensive investigation in physics and applied mathematics of new effects such as self-transformation of these pulses into white light, intensity clamping, and multiple filamentation, as well as to potential applications to wave guide writing, atmospheric remote sensing, lightning guiding, and military long-range weapons. The increasing power of high performance computers and the mathematical modelling and simulation of photonic systems has enabled many new areas of research. With contributions by theorists and mathematicians, supplemented by active experimentalists who are experts in the field of nonlinear laser molecule interaction and propagation, Laser Filamentation sheds new light on scientific and industrial applications of modern lasers.

Nonlinear Optical Materials (Paperback, Softcover reprint of the original 1st ed. 1998): Jerome V. Moloney Nonlinear Optical Materials (Paperback, Softcover reprint of the original 1st ed. 1998)
Jerome V. Moloney
R2,781 Discovery Miles 27 810 Ships in 10 - 15 working days

Mathematical methods play a significant role in the rapidly growing field of nonlinear optical materials. This volume discusses a number of successful or promising contributions. The overall theme of this volume is twofold: (1) the challenges faced in computing and optimizing nonlinear optical material properties; and (2) the exploitation of these properties in important areas of application. These include the design of optical amplifiers and lasers, as well as novel optical switches. Research topics in this volume include how to exploit the magnetooptic effect, how to work with the nonlinear optical response of materials, how to predict laser-induced breakdown in efficient optical devices, and how to handle electron cloud distortion in femtosecond processes.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
We Were Perfect Parents Until We Had…
Vanessa Raphaely, Karin Schimke Paperback R330 R220 Discovery Miles 2 200
Loot
Nadine Gordimer Paperback  (2)
R383 R318 Discovery Miles 3 180
Loot
Nadine Gordimer Paperback  (2)
R383 R318 Discovery Miles 3 180
Microsoft Xbox Series X Console (1TB)
 (21)
R14,999 Discovery Miles 149 990
Hampstead
Diane Keaton, Brendan Gleeson, … DVD R63 Discovery Miles 630
Cadac 47cm Paella Pan
R1,215 Discovery Miles 12 150
Efekto Cypermethrin - Emulsifiable…
R109 Discovery Miles 1 090
Aerolatte Cappuccino Art Stencils (Set…
R110 R95 Discovery Miles 950
Butterfly A4 160gsm Board Pad - White…
R31 Discovery Miles 310
Dunlop Pro Padel Balls (Green)(Pack of…
R199 R165 Discovery Miles 1 650

 

Partners