Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
Vladimir Arnold was one of the great mathematical scientists of our time. He is famous for both the breadth and the depth of his work. At the same time he is one of the most prolific and outstanding mathematical authors. This second volume of his Collected Works focuses on hydrodynamics, bifurcation theory, and algebraic geometry.
The second of a three-volume work, this is the result of the authors'experience teaching calculus at Berkeley. The book covers techniques and applications of integration, infinite series, and differential equations, the whole time motivating the study of calculus using its applications. The authors include numerous solved problems, as well as extensive exercises at the end of each section. In addition, a separate student guide has been prepared.
This book, the third of a three-volume work, is the outgrowth of the authors' experience teaching calculus at Berkeley. It is concerned with multivariable calculus, and begins with the necessary material from analytical geometry. It goes on to cover partial differention, the gradient and its applications, multiple integration, and the theorems of Green, Gauss and Stokes. Throughout the book, the authors motivate the study of calculus using its applications. Many solved problems are included, and extensive exercises are given at the end of each section. In addition, a separate student guide has been prepared.
The goal of this text is to help students learn to use calculus intelligently for solving a wide variety of mathematical and physical problems. This book is an outgrowth of our teaching of calculus at Berkeley, and the present edition incorporates many improvements based on our use of the first edition. We list below some of the key features of the book. Examples and Exercises The exercise sets have been carefully constructed to be of maximum use to the students. With few exceptions we adhere to the following policies. * The section exercises are graded into three consecutive groups: (a) The first exercises are routine, modelled almost exactly on the exam ples; these are intended to give students confidence. (b) Next come exercises that are still based directly on the examples and text but which may have variations of wording or which combine different ideas; these are intended to train students to think for themselves. (c) The last exercises in each set are difficult. These are marked with a star (*) and some will challenge even the best students. Difficult does not necessarily mean theoretical; often a starred problem is an interesting application that requires insight into what calculus is really about. * The exercises come in groups of two and often four similar ones.
|
You may like...
|